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1. Executive Summary 

This report is part of WP3, “IoT Platform, Wearables & Sensors”. The objective of WP3 is to integrate and 
amend existing IoT enabled devices and wearables, including a suitable architecture and middleware platform. 
The focus of this report is on the capabilities and integration of both IoT enabled devices and wearables. In 
the original MONICA DoA this deliverable is supposed to report on the activity in Task 3.4, “IoT Enabled Wear-
ables”. However, we have decided to include Task 3.5, “IoT enabled devices” as well in this deliverable be-
cause in our opinion it is an omission in the original DoA. The first part of this deliverable concerns the wear-
ables, the second part of this deliverable discusses the IoT enabled devices. 

The most important aspect or capability of the wearables is their locatability. Depending on the type of (radio) 
technology and hardware features on both the wearable and the RF reader, several ranging techniques exist 
to determine distances. These include, signal strength (RSSI), Angle of Arrival (AoA) and Time (difference) of 
Arrival (TdOA). The estimated distances using one of these techniques is used to estimate a location either 
using lateration or proximity. The former uses distances to calculate an intersection that corresponds with a 
location, the latter simply uses a proximity measure to determine a very rough location. 

There are three different types of wearables: 

(1) Crowd wearables, based on sub-GHz radio 

(2) Staff wearables, based on UWB radio 

(3) Smart glasses 

The crowd wearables are lower cost devices compared to the staff wearables. The crowd wearables are suit-
able for large scale deployment (100,000 s) and allow for rough estimation of locations. The estimated loca-
tions are perfectly suitable to get an indication of crowd densities to assist in crowd management functionality. 
In combination with the built-in two RGB LEDs which can be leveraged for notification purposes, allowing for 
e.g. visitor guidance to specific exits. The button that is available on the crowd wristband can be used to 
implement alert/alarm functionality. The crowd wearables use a network of base stations for communication 
with the wearables and for offloading the data to a central on-site server or gateway. In turn the gateway is 
connected to the MONICA cloud via the SCRAL layer. 

The staff wearables are more feature-rich and expensive wearables. They have much more accurate and 
real-time location capabilities, i.e. <30 cm accuracy and update rates up to 20 Hz. In addition these weara-
bles have a built-in IMU sensor. Optionally they are equipped with an LED screen, buzzer and Bluetooth 
(BLE) communication. The LED screen and buzzer can be used to efficiently notify staff members of im-
portant information regarding e.g. incidents. The BLE connectivity allows for more advanced (multi-media) 
messages by leveraging the more advanced display capabilities of a mobile phone. The IMU can be used to 
detect posture (falling, fighting, etc.) and moving pace (resting, walking, running) of a staff member. Similar 
to the crowd wristband, the staff wristband relies on special purpose base stations for connectivity. 

The smart glasses offer hands-free operation. Important information, alerts and notifications, including rich 
media messages, can be shown on the display that is directly projected to the eye. Built-in GPS, WiFi and 
Bluetooth connectivity allow for both standalone operation as well as operation in conjunction with the staff 
wearables or mobile phones. Also the built-in IMU can be used to track movement and posture of the person 
wearing the glasses. Note that  this type of functionality can be implemented on either a mobile phone, staff 
wristband or smart glasses or even a combination of the three to improve credibility. For the smart glasses at 
least a WiFi network is necessary for stand-alone operation. When operation in cooperation with a mobile 
phone, a functional mobile LTE/3G network is required. When working via WiFi the smart glasses use the 
SCRAL layer to connect to the MONICA cloud. 

The IoT enabled devices include several types of cameras, environmental sensors, microphones and blimps.  

There are basically two different types of cameras: CCTV or monocular cameras and time-of-flight cameras. 
CCTV cameras can be used for people counting, fight detection and generic anomalies. The time-of-flight 
cameras can be used for more advanced people tracking and queue detection. All the camera’s are using 
sophisticated local processing nodes to run their algorithms. Instead of raw footage, processed events are 
communicated to the MONICA cloud. 

Microphones are autonomous devices that have GPS built-in and also use local processing to prevent send-
ing large amounts of raw data to the MONICA cloud. The microphones rely on 3G/4G connectivity to offload 
their data. 
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The environmental sensors are able to measure wind speed, temperature and humidity. These low-power 
sensors rely on a IEEE802.15.4 network using a Raspberry Pi as a gateway to upload their data to the MON-
ICA cloud for further data fusion. 

Since drones or similar powered UAVs are not allowed to fly over urban areas, an alternative non-powered 
UAV is chosen: the blimp. Blimps can carry several payloads, like small cameras or microphones. Connec-
tivity to the MONICA cloud will need to be provided by the carried device though. 
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3. Introduction 

In this chapter three different types of wearables are discussed: crowd wristbands, staff wristbands and smart 
glasses. The crowd wristbands use sub-GHz radio technology and are targeted for tracking the location of a 
very large number of people at an event. The major purpose of the crowd wristband is crowd monitoring. The 
staff wristbands use ultra-wide band (UWB) radio for more accurate and real-time tracking of staff members 
at an event. The third type of wearables are smart glasses. Those are essentially full-fledged Android devices 
in a glasses form factor. This device is targeted for usage by security staff. 

For each of the wearables the technological capabilities and characteristics are considered. Device specific 
tracking of the wearables is extensively discussed. Infrastructure setup and connectivity to the MONICA cloud 
are described in detail. In addition, the services enabled by each of the wearable types as defined in the Use 
Case Groups are enumerated. For the staff wristbands there is and additional section on algorithms for posture 
analysis based on IMU data. Note that these algorithms are also applicable to mobile phones and smart 
glasses IMU data. Since the staff wearables have been piloted at the Kappa FuturFestival in July 2017, the 
results of this pilot are reported as well. 

Localisation of the wearables is an important aspect, therefore first some theory of localisation methods will 
be discussed in the following section. 

3.1. Overview of localisation systems 

3.1.1. Introduction 

Network-based positioning systems operate in two steps: ranging and positioning. Ranging performs the esti-
mations of distance between two nodes of interest as ranging measurements, while positioning uses the meas-
urements obtained from ranging to infer the locations of the unknown nodes (wearable devices). 

During this section the concepts of both mobile nodes (i.e., wearable device) and anchor nodes will be intro-
duced. In particular, a mobile node is a device, with a radio interface, whose position is unknown and needs 
to be localised. An anchor node is a device, with the same radio interface as the mobile device, whose position 
is fixed and well-known. 

3.1.2. Ranging methods 

Ranging is a process to determine the distance between two positions i.e. it is an estimation of position-related 
parameters. This section provides a brief description of the most common ranging methods in radio frequency 
(RF) devices: received signal strength indication (RSSI), time of arrival (ToA), time-difference-of-arrival (TDoA) 
and angle of arrival (AoA). 

3.1.2.1. RSSI 

RSSI, is a power indicator of the received RF signal. The ranging estimation based on RSSI, first introduced 
in (W. Figel et al. 1969), is the most widely used ranging method, since it is easy to implement in low-cost 
devices. It is available in almost all the wireless communication hardware whenever a data packet is received. 
However, RSSI measurements have a strong variability due to environmental conditions since they depend 
on the quality of the wireless signal which is affected by multi-path, attenuation, interference and other factors. 
This brings about the main drawback of the RSSI based ranging method: low accuracy. 

Typically, RSSI measurements, expressed in dBm, are modelled by using the Log-Normal model (S. Rao. 

2007). It represents the received signal power 𝑃′ , in dBm, as a logarithmic function of the exact distances  

between two wireless devices performing ranging. 

 𝑃′ = 𝑃0 − 10𝛼𝑙𝑜𝑔10(
𝑑

𝑑0
) + 𝑋𝜎,   (1) 

 

where 𝑃0is the received power (dBm) at a reference distance 𝑑0, typically one meter, 𝛼 is the path loss expo-

nent determined by the environment (H. Hashemi. 1993), and 𝑋𝜎  is an additive Gaussian noise 𝑋𝜎 ∼
𝑁(0, 𝜎𝑑𝑏

2 ), where 𝜎𝑑𝑏
2

 is the variance of the shadowing effects. 
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Given the parameters 𝛼, 𝑃0 and 𝜎𝑑𝑏
2

, the unbiased ranging measurement estimator from the Log-Normal  

model is (Patwari et al. 2003): 

 𝑑′ = 𝐶𝑑010
𝑃0−𝑃′

10𝛼 ,   (2) 

 

where 𝐶 is the bias factor depending on the channel model parameters 𝛼 and 𝜎𝑑𝑏, it is defined as: 

 𝐶 = 𝑒𝑥𝑝(−0.5(
𝑙𝑛(10)𝜎𝑑𝑏

10𝛼
)2).   (3) 

 
As reported in (Y. Qi et al. 2003), the RSSI based range estimator accuracy is proportional to the exact dis-
tance: 

 √𝑣𝑎𝑟(𝑑′ − 𝑑) ≥ (
𝑙𝑛(10)𝜎𝑑𝑏

10𝛼
)𝑑,   (4) 

 

From (4), it can be observed that the range estimator accuracy degrades also for higher values of 𝜎𝑑𝑏 and 

lower values of 𝛼. 

3.1.2.2. Time of Arrival (ToA) 

The ToA ranging approach, also known as time of flight (ToF), measures the RF signal travel time between 
transmitter and receiver. Typically, ToA measurements are normally distributed with zero mean and variance 

𝜎2𝑑𝑟𝑒𝑓 . In particular, the distance between transmitter and receiver can be obtained from the measured 

signal travel time by multiplying the signal propagation speed, i.e., the speed of light 𝑐 = 3 ∗ 108𝑚/𝑠. Be-

sides, the ToF can be estimated by using two approaches: one-way ranging (OWR) and two-way ranging 
(TWR). The OWR approach measures the one-way ToF; its procedure is depicted in Figure 1. In particular, 

device A sends to device B a ranging packet including the sending time stamp 𝑡0. Then, device B receives 

this packet and registers the receiving time stamp 𝑡1. Finally, the propagation time 𝑇 is estimated as 𝑇 =
𝑇1 − 𝑇0 . In this case, both A and B need to be synchronised with a common clock. Even a small 

synchronisation error of ten nanoseconds will lead to a ranging error of three meters. Since the OWR method 
requires accurate time synchronisation between transmitters and receivers, it is usually difficult to be imple-
mented. 

 

 
 

Figure 1: one-way ranging 

On the other hand, the TWR approach measures the round-trip time (RTT) of the RF signal between two 

transceivers. As depicted in Figure 2, device A sends at time 𝑇0 a ranging request to device B, who replies 

after a replying time (𝑇𝑅). When the response is received at time 𝑇1, device A is able to determine the RTT as 

𝑇1 − 𝑇0. Then the ToA is given by (𝑅𝑇𝑇 − 𝑇𝑅)/2. In this case, the two devices are not required to be 
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synchronised, since only the clock of device A is used to estimate the ToA. Device B, however, has to send 
packets back to agent A, which means more traffic is generated in the network. 

 

Figure 2: two-way ranging 

The best achievable accuracy of the ToA-based distance estimate, under single path Additive White Gaussian 
Noise (AWGN) channel satisfies the following inequality (C.Cook et al. 1970) (H.V.Poor. 1994): 

 √𝑣𝑎𝑟(𝑑′ − 𝑑) ≥
𝑐

2√2𝜋√𝑆𝑁𝑅𝛽
,   (5) 

 
 

where 𝑑 ′ is the estimated distance, 𝑑 is the corresponding exact distance, 𝑐 is the speed of light, SNR is 

the signal-to-noise ratio (SNR), and 𝛽 is the effective bandwidth of the transmitted signal. Hence, the ToA 

ranging accuracy is improved by increasing the SNR or the effective signal bandwidth. This is the main reason 
why ultra-wide band (UWB) technology is widely used in time-based ranging methods. 

3.1.2.3. Time Difference of Arrival (TDoA) 

The TDoA technique is employed when there are both (clock) synchronised and non-synchronised devices in 
the network. Typically, the synchronised devices are the anchor nodes, since they are more powerful than the 
wearable devices, and thus, it is possible to synchronise their clocks. 

 

 

(a) Mobile ranging (b) Anchor ranging 

 
Figure 3: Time-difference-of-arrival ranging 

The ranging procedure is shown in Figure 3. In particular, there are two scenarios with three anchor nodes 
(A1, A2, A3) and one wearable device (mobile node) (M). In Figure 3(b), each of the anchor nodes sends a 

ranging message including its common time stamp 𝑇0. When M receives the messages, it measures the re-

ceiving times (𝑇1, 𝑇2, 𝑇3) and calculates the ToFs (𝑡1, 𝑡2, 𝑡3) based on its own clock 𝑡0. Then, two independent 
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TDoA measurements are estimated as 𝑡1 − 𝑡2 and 𝑡2 − 𝑡3. Besides, the clock bias between anchors and M 

is removed from the TDoA estimation because of the subtraction. Moreover, in Figure 3(a), M sends the rang-

ing message at time 𝑡0 and each anchor node measures the receiving time. When the different receiving times 

become available, the ToFs and TDoAs can be calculated like before. Finally, the TDoA estimates are mapped 
into distance differences by multiplying with the speed of light. 

This approach minimises network traffic compared to ToA since ranging messages go in one direction, either 
from anchor nodes to mobile nodes or the opposite way. However, synchronisation of anchor nodes is still 
needed, and the ranging performance relies greatly on it. 

3.1.2.4. AoA 

The AoA technique estimates the arrival angle of an incident signal. Usually, the angle is measured by using 
an array of antennas. The straightforward method is to measure the phase difference of a receiving signal on 
different antenna elements and then to convert it to the AoA estimate. The position of the mobile node is 
obtained by the intersection of minimum two straight lines, as depicted in Figure 4. 

Compared to other approaches the main disadvantage of the AoA approach is the requirement of larger an-
tennas, which means large size of hardware and high power consumption. Moreover, the accuracy of AoA 
based estimation degrades when the mobile node moves farther away from the anchor nodes. 

 
Figure 4: Angle-of-arrival 

3.1.3. Localisation algorithms 

This section describes some of the most representative positioning techniques. As mentioned before, they are 
applied after the ranging step is completed and the position-related signal parameters have been collected. 

3.1.3.1. Geometric techniques 

The geometric approaches exploit geometric relationships between anchor nodes and the wearable device to 
localise it. 

3.1.3.1.1. Lateration 

Lateration uses the intersection of lines, curves, circles or spheres to determine the location in 2D or 3D. When 
dealing with distance measurements from RSSI and ToA, the wearable position is the intersection of circles 
(2D localisation) or spheres (3D localisation) centred at three or four anchors respectively. 

An example of 2D lateration is shown in Figure 5, where the intersection M, depicted with a small red circle, is 
the position of the mobile node. Moreover, with TDoA measures the location is estimated as the intersection 
of hyperbolas with foci at the positions of anchors as shown in Figure 6. 

It is worth mentioning that there is never a perfect intersection as shown in Figure 5 and Figure 6. Some 
additional optimisation strategies are taken into account to select the closest solution to the right location. 
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Figure 5: Lateration of three anchors based on RSSI and ToA 

 

Figure 6: Lateration of three anchors based on TDoA 

3.1.3.1.2. Proximity localisation 

Proximity localisation can be done also by exploiting the anchors geometry. In this case, instead of using 
intersecting lines, the intersection of the coverage area is used. Figure 7 shows how to locate a mobile with 
proximity information. In particular, the mobile’s position (M) is considered at the centre of the overlapping 
area, and its error depends on the size of such area. The positioning error may be large, but it could be better 
than unavailability. 

 

Figure 7: Locate the mobile with proximity information 

Although the proximity localisation is not accurate, it can help to locate the wearable devices with few ranging 
measurements, when there are not enough measurements or these measurements are biased. Figure 8 shows 
an example of proximity location. In particular, it shows only two available ranging measurements from anchors 
(A1 and A2) which results in an ambiguity of the estimated position; but using the connectivity of A3 (green 
circular area), the ambiguity is solved. 
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Figure 8: Proximity helps to locate the mobile 

3.1.3.2. Bayesian approaches 

In the geometrical localisation approaches, statistics of position-related signal parameters are not taken into 
account. Instead, Bayesian approaches consider the probability and statistics of these signal parameters and 
the involution of wearable positions. Besides, they model the dynamic positioning problem as a discrete-time 
stochastic process as: 

 𝑥𝑘 = 𝑓𝑘(𝑥𝑘−1, 𝑤𝑘−1),   (6) 

 

where 𝑥𝑘 and 𝑥𝑘−1 are state vectors at time step 𝑘 and 𝑘 − 1 respectively, and 𝑤𝑘−1 is the process noise 

from time step 𝑘 − 1 to 𝑘, which simulates the effects of mis-modelling and other unpredicted disturbances. 

𝑓𝑘(𝑥) is the state transition function defined from time step 𝑘 − 1 to 𝑘, which can be a linear or nonlinear 

function. 

The relationship between the state and measurement is called observation model, expressed as: 

 𝑧𝑘 = ℎ𝑘(𝑥𝑘, 𝑣𝑘),   (7) 

 

where 𝑧𝑘 represents the available measurements or observations at the current time step 𝑘 and 𝑣𝑘 is the 

measurements noise. ℎ𝑘(𝑥) is the observation function, at time step 𝑘, which relates the state 𝑥𝑘 with the 

observations; it can be linear or nonlinear. 

From (6) and (7), it can be seen that Bayesian approaches model the dynamics system problem as a first 

order Markov chain (Figure 9), whose state 𝑥𝑘 is not directly observable but can be inferred from measure-

ments. 

 

 
 

Figure 9: Hidden Markov model for Bayesian tracking 

From the Bayesian point of view, the tracking problem is to recursively estimate a new state 𝑥𝑘, taking into 

account all available measurements up to time step 𝑘 (𝑧1:𝑘). It becomes a problem of the calculation of the 

marginal distribution 𝑝(𝑥𝑘|𝑧𝑘), which in principle can be estimated by two stages: prediction and update. In 

the prediction stage, the a priori probability distribution function (p.d.f.) 𝑝(𝑥𝑘|𝑧1:𝑘−1) of the current state 𝑥𝑘 

is obtained. While, in the update stage, the a posteriori p.d.f. 𝑝(𝑥𝑘|𝑧1:𝑘) is obtained. 
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Extended Kalman Filter: The Extended Kalman Filter (EKF) provides an efficient recursive solution for non-
linear discrete filtering problems with low complexity (G. Welch et al. 2006), and it is widely used in positioning 
and tracking applications. It models a dynamic system using the same equations of (6) and (7), but the process 
noise (𝑤𝑘) and the measurement noise (𝑣𝑘) are supposed to be Gaussian distributed, 𝑤𝑘 ∼ 𝛮(0, 𝑄𝑘), 𝑣𝑘 ∼
𝛮(0, 𝑅𝑘). Moreover, the EKF estimates an a posteriori state vector by using a feedback control approach. In 
particular, the current state vector (𝑥𝑘) is predicted to produce an a priori estimate (first step), then it is refined 
by using the feedback from the measurements (second step). These two steps are also known as predict 
phase, and update phase. 
 
The predict phase provides an estimate of both a priori state 𝑥′𝑘|𝑘−1 and error covariance matrix 𝑃𝑘|𝑘−1. These 

estimates are based on the previous a posteriori estimates of both the state 𝑥′𝑘−1 and the error covariance 

matrix 𝑃𝑘−1, by using the following equations: 

 𝑥′𝑘|𝑘−1 = f(𝑥′𝑘−1|𝑘−1, μk) = Fk𝑥′𝑘−1|𝑘−1 + Bkμk,   (8) 

 Pk|k−1 = FkPk−1|k−1Fk
T + Qk,   (9) 

 

where Fk =
𝜕𝑓

𝜕𝑥
|
𝑥′𝑘−1|𝑘−1

is the Jacobian matrix of the state transition function f(𝑥), Bk relates the input (μk) with 

the dynamics of the system and Qk in the process noise covariance matrix. 
 
The update phase performs the feedback control, where both the state vector (𝑥𝑘) and the error covariance 

matrix (𝑃𝑘) are updated using the measurements vector (zk). The optimal Kalman gain 𝐾𝑘 and innovation 
vector 𝑦′𝑘 are calculated as follows: 

 Kk = Pk|k−1Hk
T(HkPk|k−1Hk

T + Rk)
−1

,   (10) 

 𝑦′k = zk − h(x′k|k−1),   (11) 

 

where Hk =
𝜕ℎ

𝜕𝑥
|
𝑥′𝑘|𝑘−1

 is the Jacobian matrix of the observation function h(𝑥) and Rk is the observation error 

covariance matrix. Typically, Rk is modelled as uncorrelated white Gaussian noises and depends on the 

variance 𝜎𝑑𝑟𝑒𝑓
2  of the measurements vector zk. Finally, the state estimate x′k and the error covariance matrix 

Pk are updated as follows: 
 

 x′k|k = x′k|k−1 + Kky′k,   (12) 

 Pk|k = (In − KkHk)Pk|k−1,   (13) 

 
where In is an identity matrix whose dimension is the same as Pk. 
 
Particle Filter: The Particle filter (PF) is a category of Monte Carlo methods that approximates the discrete a 
posteriori distribution of a generic state vector 𝑥k at time tk by employing a set of particles and associated 

weights {xk
𝑖 , 𝑤𝑘

𝑖 }
𝑖=1

𝑁
. The estimated a posteriori distribution is given by: 

 p(xk|𝑧(1:𝑘)) ≈ ∑𝑤𝑘
𝑖 𝛿(xk − xk

𝑖 )

𝑁

𝑖=1

,   (14) 

 

where 𝑧(1:𝑘) denotes the observations up to tk, 𝑤𝑘
𝑖  is the weight associated to the 𝑖-th particle, 𝑁 is the total 

number of particles and 𝛿(𝑥) is the Dirac delta function, defined as zero everywhere except for 𝛿(0) = +∞, 

with ∫ 𝛿(𝑥)𝑑𝑥 = 1.  

The sample 𝑥𝑘
𝑖  is generated as 𝑥′𝑘|𝑘−1 in (8) (i.e., it depends on the state model), and its associated weight is 

given as: 
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 𝑤𝑘
𝑖 = 𝑤𝑘

𝑖−1 ∗ p(𝑧𝑘|𝑥𝑘
𝑖 ),   (15) 

 

where p(𝑧𝑘|𝑥𝑘
𝑖 ) is the likelihood function which is defined as follows: 

 𝑝(𝑧𝑚,𝑘|𝑥𝑚,𝑘
𝑖 ) = ∏ 𝑝𝑛𝑚(𝑑′𝑟𝑒𝑓𝑛𝑚,𝑘 − ‖𝑝′𝑟𝑒𝑓𝑛,𝑘 − 𝑝𝑚,𝑘

𝑖 ‖)

𝑛∈𝑀𝑚,𝑘

,   (16) 

 

where 𝑝𝑛𝑚 is the probability density of measurements, 𝑝′𝑟𝑒𝑓𝑛,𝑘 is the reference anchor position from which 

𝑑′𝑟𝑒𝑓𝑛𝑚,𝑘 has been collected, and 𝑝𝑚,𝑘
𝑖  is the wearable device position for the particle 𝑖. 
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4. IoT enabled wearables 

4.1. Introduction 

In this section the smart wearables provided by Dexels will be discussed. There are two different types of 
wearables: a crowd wristband and a staff wristband. The crowd wristband is a less expensive wristband that 
allows for supporting 100,000’s of visitors. The staff wristband has more features and is aimed at 1,000’s of 
users. The crowd wristband allows for crowd monitoring, leveraging the bi-directional 100 m range radio that 
is integrated in the wristband. The crowd monitoring feature can be used to create heat maps of the crowd, 
showing visitor densities. In addition RFID is integrated in the crowd wristband to support access control and 
cashless payments. The LEDs on the crowd wristband can be used for entertainment purposes and for crowd 
control as well. The staff wristband has a more accurate tracking capability. The typical accuracy of crowd 
wristbands is 10 m while the staff wristband has an accuracy of less than 50 cm. In addition the staff wristband 
has an integrated BLE radio that can be used to communicate with a smartphone or smart glasses. The wrist-
band version of the ultra-wide band (UWB) wearable also features a LED screen that can be used to notify or 
instruct the user. 

4.2. Crowd wristbands 

4.2.1. Previous large scale deployments 

The first large scale implementation of the crowd wristband was deployed in 2014 during two weekends of the 
Tomorrowland festival in Boom, Belgium. Each weekend a total number of 125,000 crowd wristbands were 
active during three days. The system supported “scanning” all 125,000 wristbands in 8 minutes. A wristband 
communication time slot was used to send a message containing: “closest base station”, voltage, temperature 
and a unique wristband ID. A total number of 60 base stations, spread over the festival area, connected using 
ethernet cables and powered by Power over Ethernet (PoE) was deployed. Each base station was running a 
Salt stack1 for supporting remote configuration. 
 

  
Figure 10: LED show with crowd wristbands in front of the main stage at Tomorrowland 2014 

                                                
1 https://saltstack.com/ 
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4.2.2. Technology overview 

The crowd wristband can appear in multiple bracelet incarnations. It could be a leather bracelet, a textile wrist-
band or a silicon wearable. What really matters is in the inside. The current version of the wristband contains 
the following components: 

• Radio/microcontroller (MCU) 

• CR2032 battery 

• Two bright RGB LEDs 

• RFID/NFC chip  

• Button 

• Clock 

• Antennas (HF RFID and UHF) 
 

 
Figure 11: A Sendrato smart wristband module2 

Together these parts cooperate to form the crowd wristband solution. The software running on the MCU con-
trols the operation of the wristband. It controls the radio communication, the LEDs and the behaviour of the 
button press. 

The MCU can wake up from its deep sleep mode in several ways. On wakeup the MCU starts its normal 
operation by listening to radio messages transmitted from a base station. The base station messages synchro-
nises the wristband clocks and sends commands either to a particular wristband or to all wristbands. The 
commands instruct the MCU to light up the LEDs. Each wristband can be addressed separately by means of 
a unique ID. This unique ID is associated with personal details of the visitor wearing the wristband. 

The button can be used for several user inputs. Two examples are “Music Like” and “Friend-Connect”. The 
Music Like works as follows: when the button on the wristband is pushed for a moment, the location and time 
will be registered in that user’s data file. This is then correlated with the music played. We detect this music 
with a real time music discovery method (continuous and automated). This information together can be used 

                                                
2 Note that the battery, LEDs and button are positioned on the flip side. 
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to send a “Playlist” to the user in an app, on a website or via email. The music tags can also be used in more 
advanced communication to the visitor, like sending YouTube videos or music fragments. 

Figure 12: Crowd wristbands TDMA protocol 

A friend is connected by exchanging personal information (which is enabled during registration) by holding the 
button for 2 s until the LEDs light up blue. By holding the wristbands in close proximity of each other, the LEDs 
flash green and a connection is made (in the cloud database). 

4.2.3. Crowd wristband TDMA Protocol 

The crowd wristband protocol uses parallel time slots to allow for higher throughput of wristband messages. 
Four radio channels (TRX, RX1, RX2, RX3) are used simultaneously. Wristbands messages are sent using a 
TDMA protocol. A CSMA phase in the TDMA scheme is used for sending “urgent” messages like “wristband 
connects” and button pushes (aka likes). 

The wristband protocol relies on tight clock-synchronisation to support the TDMA protocol. The clocks on the 
wristband are synchronised by pilot messages sent by each base station. Depending on a unique ID (with a 
cardinality of 216), a base station sends its pilot message in a predefined time slot. The length of a time slot, 
for both pilots and wristband messages, is set to 3 ms. A maximum number of 16 base stations time slots 
initiate a new “communication window” (see Figure 12). Hence, the pilot-phase of the messaging windows 
always takes 50 ms. A wristband uses the pilot message to synchronise its local clock. Besides clock synchro-
nisation, a pilot message contains the “wristband ID range” parameters and optional LED commands. The 
“wristband ID” range is used to define the logical range of wristband IDs (WUIDs) that need to be polled. The 
range is defined by a start- and an end-value. The WUID of a wristband is first masked to fall within the polling 
range before its reporting time slot/channel is determined. 

The remainder of the messaging window is used to send a wristband “reporting message”. Each wristband is 
assigned its unique time-slot and channel (1 out of 4) to send this message. The reporting window size can be 
adjusted from 0 ms to 200 ms, resulting in a total communication window of 50 - 250 ms. The 50 ms mode is 
used for low-latency LED operation, allowing a new LED command to be sent every 50 ms. This comes at the 
expense of not being able to report wristband messages during 50 ms-operation. The default operation mode 
is 250 ms, resulting in a maximum reporting throughput of almost 3,200 wristbands per second (remember the 
4-fold parallelism due to the multiple channels).   

The addition of an urgent message mode for “wristband connect” and “button push” messages using a CSMA 
protocol results in a responsive and correct implementation of the so called “Friend-Connect” feature. The 
wristband connect feature is enabled by holding the buttons on each wristband for 2 s. This will trigger the 
wristband to send, at lowest TX power, its unique WUID and start listening for a maximum of 10 s to WUIDs 
sent by neighbouring wristbands. Whenever a neighbouring WUID is received the “wristband connect” mes-
sage is constructed, containing both WUIDs, a nearest base station ID and a time stamp. This message is 
sent “immediately”. The wristband will wait for an ACK of the base station ID that corresponds to the nearest 
base station ID defined in the wristband connect message. When the ACK is not received after 1 s, this process 
is retried for a maximum number of 10 times. If the ACK is still not received after 10 retries, the wristband 
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connect message will be sent at the first occurrence of a reporting time slot for this specific wristband; this is 
done only once. The same procedure is used for single button push events. 

The Sendrato protocol supports a maximum of 16 base stations per “Pilot Channel” (TRX). A total number of 
6 Pilot Channels can be defined, resulting in a maximum infrastructure of 96 base stations. A wristband deter-
mines the “strongest” Pilot Channel by scanning other channels every 30 s. By keeping a list of strongest 
channels it decides whether it is time to switch to another Pilot Channel. This effectively implements a channel 
handover procedure for the wristbands allowing for larger areas that can be supported by the protocol. This 
still limits the maximum area size that can be covered by the wristbands; exploring ways to bypass this limita-
tion is part of future work. 

4.2.4. Infrastructure for crowd wristbands 

The crowd wristbands need a dedicated infrastructure of base stations that communicate with each other and 
with the wristbands. The maximum safe range between a wristband and a base station is 75 m. This implies 
that a wristband must always be at maximum 75 m away from a base station in order to have coverage. This 
characteristic can be used to design and setup the base station infrastructure for a specific venue. Since there 
is a limit to the number of base stations (96) there is a limit to the maximum area that can be covered. Hence, 
currently the spatial scalability is limited. The number of wristbands that is currently supported is limited by the 
3 bytes that are used to identify a wristband. There is no inherent limitation to the number of wristbands in the 
protocol itself. 

The base station radio is controlled by an ARM based PC board running Linux and the base station software. 
The base stations themselves are joined together in a software cluster. A unique redundant-communication 
protocol has been developed that enables the use of multiple physical communication layers between the base 
stations.  

  

Figure 13: Crowd wristbands infrastructure deployment 

TCP/IP based communication, both Ethernet and WiFi, as well as several low-bandwidth wireless communi-
cation technologies (Plexus) are supported. Altogether this creates a highly fault-tolerant communication chan-
nel between the base stations. If for example the Ethernet or WiFi infrastructure fails, the messages are still 
sent using the alternative available wireless infrastructure, making the system independent of the festival’s 
infrastructure. A typical communication use case is a message that originates from a wristband, being received 
by one or more base stations and further transported to our server node(s). 

The server infrastructure is partly deployed locally on the festival premises and partly in the MONICA cloud. 
This setup enables the mobile apps that are running on the visitor’s smartphones to interact with the system. 
Again, for fault-tolerance reasons, the server infrastructure can be set up redundantly. Failure of a server node 
does not result in failure of the entire system. A management console is available for operators to control the 
entire system. Furthermore, the software on each base station can be updated simultaneously with a single 
mouse click in a matter of seconds. The messages that are received from the wristband are used to perform 
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real-time triangulation to drive the crowd monitoring system, heat map visualisation and individual wristband 
tracking. 

Over the course of an event millions of messages are being collected. These messages are stored in a highly 
scalable distributed MongoDB database. The database contains information of all the visitors. It is completely 
up to the festival organiser to determine which kind of registration information is mandatory or optional. This 
data can be imported from the ticketing database or, depending on the capabilities of the ticketing database, 
automatically synchronised. The visitor database is replicated in real time to cloud instances. 

4.2.5. Services enabled by crowd wristbands 

4.2.5.1. Localisation service 

Since there is an approximate location for every wristband in near real time, every few minutes, this feature 
can be leveraged to implement a Location Service for visitors. In case a visitor needs to be found the last 
known location can be queried from the COP in the MONICA cloud. 

4.2.5.2. Crowd density detection 

The location of the visitors can be used to calculate a crowd density. The resolution of this discrete density 
field is typically 5 m x 5 m. This is a useful feature for so called crow monitoring, i.e. knowing the number of 
visitors in various event areas at any instant. This could also be used to detect high-risk queues (or at least 
high risk densities) based on the maximum capacity of these areas. The location collected by the crowd wrist-
bands is used to create a current overview of the crowd distribution in the event area; the DSS can implement 
algorithms to detect over capacity or high risk queues. The crowd density can be visualised in a dashboard 
application running in the Central Command Center (CCC) of the event. In addition to the DSS, this information 
can be used by CCC staff to detect hot spots in crowd densities. 

4.2.5.3. Find the exit 

The two RGB LEDs on the crowd wristband can be used to guide people based on colour codes. A venue can 
have “coloured exits”. The LEDs of the wristbands can be controlled by individual base stations. A wristband 
will give priority to LEDs command from the base station that is nearest; based on this proximity characteristic 
the wristbands can be guided to the nearest exists indicated by a colour command of the LEDs. 

4.2.6. Localisation algorithms for crowd wristbands 

In this section several localisation methods are discussed that are applicable to the crowd wristband. 

4.2.6.1. Multi-lateration NLLSQ 

The received signal strengths (RSSI) give a rough estimate of the distance of a wristband to the base stations. 
From these distances the location of the wristband can be determined. This is called lateration (see 3.1.3.1.1.). 
The nonlinear least squares method minimises the difference between the localised distances and the meas-
ured ones. The localised distances are the distances between the localised wristband position and the base 
stations. The Levenberg Marquardt3 method is used to minimise the least squares which is an iterative algo-
rithm. At each step the localised distances and Jacobian are calculated. Usually the algorithm converges in a 
few steps. 

4.2.6.2. Particle Filter 

The Particle Filter (PF) is a category of Monte Carlo methods that approximates the discrete a posteriori dis-

tribution of a generic state vector 𝑥k  at time tk  by employing a set of particles and associated weights 

{xk
𝑖 , 𝑤𝑘

𝑖 }
𝑖=1

𝑁
. The estimated a posteriori distribution is given by: 

 p(xk|𝑧(1:𝑘)) ≈ ∑ 𝑤𝑘
𝑖𝛿(xk − xk

𝑖 )𝑁
𝑖=1 ,   (8) 

 

                                                
3 https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm 
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where 𝑧(1:𝑘) denotes the observations up to tk, 𝑤𝑘
𝑖
 is the weight associated to the 𝑖-th particle, 𝑁 is the total 

number of particles and 𝛿(𝑥) is the Dirac delta function, defined as zero everywhere except for 𝛿(0) = +∞, 

with ∫ 𝛿(𝑥)𝑑𝑥 = 1. Compared to Kalman filters, PFs are able to deal with nonlinearity of the system and 

non-Gaussian distributed observations (F. Sottile et al. 2011). 

The weights are recursively updated by using the importance sampling principle (A. Doucet. 1998). In partic-
ular, the performance of the PF is strongly influenced by the choice of the importance density 

𝑞(𝑥k|𝑥0:k−1, 𝑧(1:𝑘)) (M.S et al. 2002). 

In many practical tracking problems, the importance density is chosen to be the a priori density 𝑝(𝑥𝑘|𝑥𝑘−1
𝑖 ). 

Thus, depending on the state model, a sample 𝑥𝑘
𝑖
 is generated as 𝑥

^

𝑘|𝑘−1 in (Caceres et al. 2009), and the 

associated weight is given by: 

 𝑤𝑘
𝑖 = 𝑤𝑘

𝑖−1 ∗ p(𝑧𝑘|𝑥𝑘
𝑖 ),   (9) 

 

where p(𝑧𝑘|𝑥𝑘
𝑖 ) is the likelihood function. 

According to the simulator that will be presented in section 4.3.6.1 as well as the RSSI-measurements distri-
bution that will be provided in section 4.3.4.6, simulation results showed an RMS error of 2.32 m. Moreover, 
as benchmarking, the simulation results has been compared with a linear least squares (LSS) algorithm (S. 
Gezici et al. 2008) which has produced a RMS error of 8.5 m. 
 
Likelihood Function for RSSI Measurements 
 
The likelihood function for RSSI is defined as follows: 
 

 𝑝(𝑧𝑚,𝑘|𝑥𝑚,𝑘
𝑖 ) = ∏ 𝑝X𝜎 (𝑃

^

𝑟𝑒𝑓𝑛𝑚,𝑘 − 𝑃𝑟𝑒𝑓𝑛𝑚,𝑘 (𝑑(𝑝𝑟𝑒𝑓𝑛,𝑘 , 𝑝𝑚,𝑘
𝑖 )))𝑛∈𝑀𝑚,𝑘 ,   (10) 

 

where 𝑝X𝜎 is the probability density of the RSSI measurement, which is Gaussian distributed with zero mean 

and standard deviation 𝜎𝑑𝑏, and  𝑃𝑟𝑒𝑓𝑛𝑚,𝑘 (𝑑(𝑝𝑟𝑒𝑓𝑛,𝑘, 𝑝𝑚,𝑘
𝑖 )) is the RSSI value from (1), which depends 

on the Euclidean distance between the mobile node position (𝑝𝑚,𝑘
𝑖

) particle 𝑖 and the position (𝑝𝑟𝑒𝑓𝑛,𝑘) of the 

neighbouring peer at time 𝑡𝑘. 

4.2.7. RSSI measurements campaign and GDOP analysis 

A RSSI measurements campaign has not been foreseen during the Kappa FuturFestival (KFF) described in 
section 4.3.9. Consequently, real measurements were not available to perform a reliable Cramér–Rao lower 
bound (CRLB) analysis. Despite this, a preliminary CRLB analysis, based on (N. Patwari et al. 2003), has been 

done considering the input channel model parameters (𝜂 =2.31,𝜎𝑑𝑚 =2.292 ) from (Chruszczyk et al. 2016) 

(Chruszczyk. 2017) with the same deployment used in KFF as geometric reference. It is worth mentioning that 
an analysis based on real measurements will be provided in the next iteration of this document. 

Figure 14, shows the lower bound localisation error considering the already mentioned parameters. The aver-
age localisation error is 2.93 m with a minimum of 1.92 m and a maximum of 4.63 m, respectively; and a 
standard deviation of 0.45 m. The localisation has a lower error when the mobile node is close to the anchor 
nodes, since the RSSI measurement is more reliable. Also, when the mobile node is in the middle of the 
localisation area since there is good geometry with respect to the anchor nodes. 
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Figure 14: RSSI measurements CRLB analysis 

4.2.8. RSSI-based simulator 

The RSSI-based simulator is MATLAB-based software which simulates the behaviour and evaluates the per-
formance of the algorithm presented in section 4.2.6, used to localise and track position of some mobile nodes. 
In particular, the software provides as output the cumulative distribution function (c.d.f.), the p.d.f., the conver-
gence time (CT) of the algorithm, and plots the estimated positions. Moreover, it allows to simulate an indoor 
environment, without obstacles, with static nodes or pedestrian mobility nodes. Besides, it also simulates urban 
environments. Even if the software has a centralised CPU, mobile nodes position estimations are performed 
as the algorithm would separately run on each mobile node (i.e. distributed localisation). 

 

Figure 15: RSSI-based simulator 

RSSI measurements are modelled as described in section 3.1.2. Pedestrian mobility is modelled with a random 
way point model or with a Brownian model. The random way point model generates mobile nodes which are 
moving at a certain minimum/maximum speed each time while in the Brownian model mobile nodes move 
adopting different standard deviations with respect to the direction (i.e., East-West, North-South and up). 

4.2.9. Integration of crowd wristbands into the IoT middleware 

The integration of the crowd wristbands is realised via the Gateway Node of the crowd wristband (Figure 16). 
The gateway collects all the information coming from the various base stations that in turn receive all the 
wristbands messages. The gateway is interfacing with the SCRAL layer in the MONICA cloud by pushing 
JSON messages to an MQTT end-point offered by the SCRAL. The following MQTT endpoints are supported: 

Table 1: REST API 

API Name Description 
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REST/MQTT: /monica/wristband Gets the current status of a wristband based on a unique wrist-
band ID. Current status contains wristband ID: 

• lat/lon coordinates 

• time stamp 

• velocity (only UWB) 

• bearing (only UWB) 

• closest area 

• x,y position (only UWB) 

• temperature 

• battery level 

The data format is JSON 

REST/MQTT:/monica/buttonpress • wristband ID 

• time stamp 

The data format is JSON 

REST:/monica/wristbands Get a list of all active wristband IDs: 

• wristband ID 

The data format is JSON 

 

 

4.3. Staff wristband 

4.3.1. Introduction 

The fundamental building blocks of the staff wristband system are ultra-wide band (UWB) anchors and tags. 
Anchors are fixed location UWB nodes, containing at least one so called master anchor that is responsible for 
collecting all the data (wirelessly or wired) from the other anchors. Anchors send/receive messages to/from 
mobile tags. These messages are used in the localisation process as well as for communicating so called user 
payloads. These payloads can include e.g. data from sensors attached to the tags. 
 
The system uses UWB-based geometrical localisation. For ranging TWR ToA (see section 3.1.2.2.) is used. 
TWR does not require any synchronisation of the clocks at all, however this comes at the expense of having 
to communicate at least three messages between tag/anchor before the range can be determined. This means 
that with TWR less tags can be tracked in a certain amount of time compared to T(D)oA. Still, the system uses 
TWR and supports 1,200 location updates per second. Hence, 1,200 tags can be ranged running at an update 
rate of 1 Hz. 
 
The next step in the process is localisation. Localisation calculates the position based on the distances (cal-
culated during the ranging phase) between the tag and the (visible) anchors. The position is calculated using 
lateration. Since the accuracy of the Decawave UWB chip is +/- 10 cm in LOS (Line of Sight) conditions and 
+/- 30 cm in NLOS (Non Line of Sight) conditions, there is always additive (white) noise present in the calcu-
lated distances. Therefore, an exact (closed form) solution of the lateration problem is not possible. One has 
to rely on an optimisation procedure to calculate the location. Typically a nonlinear least square (NLLS) method 
is used. In case of not just localisation, but also tracking a moving object, additional methods are used. Jitter 
in the calculated track is usually mitigated using some smoothing or filtering method. In our case we are using 
either an Extended Kalman Filter or an Extended Finite Impulse Response (FIR) in combination with an NLOS 
detection and mitigation. These methods result in low jitter while still having acceptable latencies (<500 ms in 
case of a 20 Hz update rate). 
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Figure 16: Staff wristbands infrastructure deployment 

4.3.2. Technology overview 

The UWB module contains a number of components in its current incarnation: 

• 1.3” 176x176 color display 

• Bluetooth LE 

• USB and wireless charging 

• Decawave DW1000 ultra-wide band radio 

• UWB Low Noise Amplifier 

• ARM Cortex M4 

• 300 - 400 mAh battery 

Furthermore several sensors and actuators are available: 

 

• Light sensor 

• IR proximity 

• Pressure sensor 

• Temperature sensor 

• Humidity sensor 

• Microphone 

• 9 axis IMU (Accelerometer, Gyroscope, Magnetometer) 

• 2 buttons 

• Haptic feedback 

4.3.3. Infrastructure for staff wristbands 

The infrastructure consists of a number of components. The total system setup is comprised of anchors, tags, 
a network router, a network switch and a server running the location engine and configuration software. A 
browser is used to setup and monitor the system which can run on anything from a PC, a tablet to a 
smartphone. 

The Indoor Positioning System (IPS) or Location Engine (LE) runs on a standard Linux PC. Our platform of 
choice is currently a System 76 Meerkat4. The Meerkat is connected to the same Local Area Network as the 
master anchor(s). The software running on the Meerkat receives the tag distances from the master anchor via 
UPD messages. Subsequently the IPS on the Meerkat calculates the position of the tag using a selected 
localisation algorithm, either NLLS (Non Linear Least Squares), EKF (Extended Kalman Filter) or EFIR (Ex-
tended Finite Impulse Response filter). The position of the tag can be visualised on the browser together with 
a modelled blue print of the environment. In addition, the calculated positions can be “published” using several 

                                                
4 https://system76.com/desktops/meerkat 
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available publish methods or a user defined publishing method. Current publish methods support JSON mes-
sages over MQTT or a HTTP REST endpoint. The MQTT server and REST endpoint can be dynamically 
configured using the IPS configuration software running in the browser. 

4.3.4. Localisation algorithms for staff wristbands 

4.3.4.1. Introduction 

Recall that an ultra-wide band (UWB) system consists of anchors at known locations and mobile tags at un-
known locations. The staff wristband contains an UWB tag. We want to determine the location of the mobile 
tags over time. At each time step the anchors measure its distance to the mobile tag which can be used to 
estimate the position of the tag. 

A state model is an algorithm that uses a series of measurements observed over time, containing statistical 
noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate 
than those based on a single measurement alone, by using Bayesian inference and estimating a joint proba-
bility distribution over the variables for each timeframe. In our case the state consists of the position and ve-
locity of the tag. 

We can distinguish two types of errors in the measured distances, statistical noise due to e.g. atmospheric 
fluctuations and inaccuracies when the direct line-of-sight is blocked: non-line-of-sight (NLOS). Statistical noise 
is assumed to be Gaussian distributed and can be both positive and negative. The line-of-sight can be blocked 
by metal objects such as reinforced concrete walls or containers of water like human bodies. In a NLOS situ-
ation the signal between the tag and an anchor is delayed by reflections or attenuation resulting in an increased 
measured distance. The detection and mitigation of NLOS is important for accurate localisation. 

In the section below we introduce some theory on the state- and the observation models that are used in the 
several versions of the Extended Kalman (EKF) and Finite Impulse Response (FIR) filters. 

4.3.4.1.1. State model 

The state model position-velocity (PV) has been adopted, it considers dynamics with constant speed. Accord-

ing to this, the state vector (x
^

k) is expressed as: 

 x
^

k = [𝑝
𝑛𝑣𝑛]T,   (11) 

 

where, 𝑝𝑛 and 𝑣𝑛 are 𝑛-dimensional position and velocity vectors, respectively. Following, the equations that 

describe the dynamics of the system: 

 𝑝𝑘
𝑛 = 𝑝𝑘−1

𝑛 + 𝑣𝑘−1
𝑛 ∆𝑡𝑘 + 0.5𝑎

𝑛Δtk
2,   (12) 

 𝑣𝑘
𝑛 = 𝑣𝑘−1

𝑛 + 𝑎𝑛∆𝑡𝑘,   (13) 

where, ∆𝑡𝑘 is the elapsed time between the previous estimation time 𝑡𝑘−1 and the current estimation time 𝑡𝑘, 

and 𝑎𝑛 is a 𝑛-dimensional vector of independent random accelerations normally distributed. 

The dynamic model is presented in its matrix form, below, in order to relate it with the EKF. The Jacobian 

matrix of the state transition function f is defined as: 

 F𝑘 = [
I𝑛
0𝑛

Δt𝑘I𝑛
I𝑛

],   (14) 

 

where I𝑛 is a 𝑛 x𝑛 identity matrix and 0𝑛 is a 𝑛 x𝑛 matrix with all zero entries. 

The process noise covariance matrix Qk is defined as: 
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 Q𝑘 = [
0.5Δt𝑘

2 I𝑛
Δt𝑘I𝑛

] 𝑑𝑖𝑎𝑔 (σ
𝑎
ˇ
n

2 ) [
0.5Δt𝑘

2 I𝑛
Δt𝑘I𝑛

]
𝑇

,   (15) 

 

where 𝑑𝑖𝑎𝑔 (σ
𝑎
ˇ
n

2 ) is a diagonal matrix with the variances of 𝑎𝑛 that allow to track the different forces that 

could temporally affect the target's dynamics (e.g., friction) (Caceres et al. 2009). 

 

4.3.4.1.2. Observation model 

The ranging measurements are the observation vectors (zk), for the EKF. They are defined as the distances 

between a mobile node and 𝐿 anchor nodes within signal range and are normally distributed with zero mean 

and variance 𝜎𝑑𝑟𝑒𝑓
2

. 

 zk = [𝑑
~

𝑟𝑒𝑓1⋯𝑑
~

𝑟𝑒𝑓𝐿]
𝑇

,   (16) 

 

where the distance 𝑑
~

𝑟𝑒𝑓𝑙 with 𝑙 ∈ [1, 𝐿], is the estimated ranging measurement. The measured distance is 

modelled as: 

 𝑑
~

𝑟𝑒𝑓𝑙 = 𝑑𝑟𝑒𝑓𝑙 + 𝜂,   (18) 

 

 𝜂 ∼ 𝑁 (0, 𝜎𝑑𝑟𝑒𝑓
2 ),   (17) 

 

where 𝜂 is the observation error which is Gaussian distributed with zero mean and standard deviation σ𝑑𝑟𝑒𝑓 

as in (17). 𝑑𝑟𝑒𝑓𝑙 is the true ranging measurement defined as: 

 𝑑𝑟𝑒𝑓𝑙 = 𝑑𝑖𝑠𝑡(𝑝, 𝑝𝑟𝑒𝑓𝑙) = √∑ (𝑝𝑖 − 𝑝𝑖,𝑟𝑒𝑓𝑙)
2𝑛

𝑖=1 ,   (19) 

 

Typically the observation errors are modelled as uncorrelated white Gaussian noises so the covariance matrix 

R𝑘 depends on the variance of the measurements 𝜎𝑑𝑟𝑒𝑓𝑙
2

, 

 R𝑘 = diag (𝜎𝑑𝑟𝑒𝑓1
2 , ⋯ , 𝜎𝑑𝑟𝑒𝑓𝑙

2 , ⋯ , 𝜎𝑑𝑟𝑒𝑓𝐿
2 ),   (20) 

 

Consequently, the observation function ℎ is defined as the distances between the position component of the 

state vector and the reference nodes, 

 h(𝑥𝑘) = [

dist(pk, 𝑝𝑟𝑒𝑓1)

⋮
dist(pk, 𝑝𝑟𝑒𝑓𝐿)

].   (21) 
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Since h(𝑥𝑘) is nonlinear, the Jacobian matrix H needs to be computed around the a priori state 𝑥𝑘|𝑘−1, 

Hk =

[
 
 
 
p1,k|k−1−𝑝1,𝑟𝑒𝑓1

dist(pk,𝑝𝑟𝑒𝑓1)

p2,k|k−1−𝑝2,𝑟𝑒𝑓1

dist(pk,𝑝𝑟𝑒𝑓1)

p3,k|k−1−𝑝3,𝑟𝑒𝑓1

dist(pk,𝑝𝑟𝑒𝑓1)

⋮ ⋮ ⋮
p1,k|k−1−𝑝1,𝑟𝑒𝑓1

dist(pk,𝑝𝑟𝑒𝑓𝐿)

p2,k|k−1−𝑝2,𝑟𝑒𝑓1

dist(pk,𝑝𝑟𝑒𝑓𝐿)

p3,k|k−1−𝑝3,𝑟𝑒𝑓1

dist(pk,𝑝𝑟𝑒𝑓𝐿)

0𝑣 0𝑣
⋮ ⋮
0𝑣 0𝑣

]
 
 
 

,  (22) 

 

where, 0𝑣 is a row vector with 𝑛 zero entries. 

4.3.4.2. EKF with NLOS detection 

The Extended Kalman Filter (EKF)(H. Cox. 1964) is a suboptimal estimator for nonlinear state models. We 
can track an UWB tag with the EKF and a position-velocity (PV) model (Caceres et al. 2009). The EKF esti-
mates the tag position from the state at the previous time step and the measured distances at the current step. 
Important parameters of the filter are the measurement errors and process noise. The errors in the distances 
are around 5 cm for the Decawave UWB chip. The process noise can be treated as a tuning parameter to 
adjust the EKF to smooth out either more or less data as a tradeoff between estimation accuracy and time lag. 
Setting the process noise to a wrong value can even lead to divergence of the filter. 

To detect NLOS we have tried two different methods, both of them use estimated distances. At each time step 
we calculate the distances of the estimated position to the anchors giving estimated distances. We compare 
the estimated to the measured distances at the next time step. The first method detects NLOS when a meas-
ured distance jumps too much from the estimated one. The second method looks at jumps in jumps which 
corresponds to acceleration. For both methods the NLOS is mitigated by replacing the measured distance by 
the estimated one. 

4.3.4.3. EFIR with NLOS Detection 

A disadvantage of the EKF is that it requires estimates of the measurement and process noise, which may not 
be known exactly in practice especially for time-varying models. Therefore the EKF may lose in accuracy or 
precision so it is not a robust estimator. The Kalman filter is an Infinite Impulse Response (IIR) filter which 
means that the effect of outliers may last for a long time. 

An alternative to the Kalman filter is Extended Finite Impulse Response (EFIR) filtering (Shmaliy et al. 2017) 
which uses a limited number of samples to estimate the position. The EFIR filter uses the same state model 
as the EKF but it does not need the measurement of the process noise and is therefore more robust. The EFIR 
filter only requires to set the number of samples used. A disadvantage is that the EFIR filter has more lag than 
the EKF. The lag can be minimised by choosing the right length of the filter. 

For the EFIR filter we use the same NLOS detection and mitigation as for the EKF. 

4.3.4.4. EKF with outlier mitigation 

The EKF provides an efficient computational recursive algorithm that estimates the process state by minimising 
the mean of the squared error. However, the performance of KF, in general, degrades when the observed data 
contains outliers (J. A. Ting et al. 2007). The proposed EKF, identifies outliers while tracking the observed 
data. Moreover, it is adaptive and there is no need for parameter tuning or the use of heuristic methods. The 
outlier mitigation has been implemented by adopting the approach proposed in (J. A. Ting et al. 2007). In 
general, the EKF with outlier mitigation is implemented as described in (G. Welch et al. 2006) with a variation 
in the update phase. In particular, during the update phase, the observations are dynamically weighted ac-
cordingly with the error. 

According to the simulator in section 4.3.6.1 as well as the UWB measurements distribution presented in 
section 4.3.4.6, simulation results showed an RMS error of 0.07 m with 60% presence of outlier measurements 
during the Monte Carlo simulation. Besides, as benchmarking, these results has been compared with a PV 
EKF algorithm (Caceres et al. 2009) with a RMS error of 0.54 m. 
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4.3.4.5. Particle Filter 

The adopted particle filter is the same as in section 4.2.6.2. The main difference is in the likelihood function 
which is derived for ToA measurements. Thus, the likelihood function depends on the p.d.f. of ToA (ranging) 
measurements, tag and anchors positions and the related particles. 

Simulation results provided a RMS error of 0.28 m, outperforming the LSS algorithm (S. Gezici et al. 2008) 
with a RMS error of 0.79 m, under same simulation conditions. 

4.3.4.6. UWB ranging measurements campaign and CRLB analysis 

The UWB ranging measurements campaign has been foreseen at the KFF, already described in section 4.3.9. 
Analysis performed at collected data showed 0.13 m of standard deviation for ranging measurements. Besides, 
the mean ranging error has been 0.18 m with respect to a few anchor nodes and 1.46 m for the majority of 
them. Previous results show that there were outlier ranging measurements, probably, due to interferences 
from the environment. As a consequence, this took place to biased ranging measurements. 

 

 

Figure 17: UWB measurements CRLB analysis 

The CRLB analysis has supposed the ranging model for ToA ranging measurements (i.e., normally distributed 

with zero mean and standard deviation 𝜎𝑑𝑟𝑒𝑓), which represents the UWB measurements. From KFF out-

comes, 𝜎𝑑𝑟𝑒𝑓 has been set to 0.18 m. Figure 27 shows the CRLB analysis results. The expected location error 

considering anchor nodes distribution and the ranging model is 0.10 m, with a standard deviation about zero 
meters. In general, a low localisation error is expected over the localisation area, in presence of good environ-
mental conditions (i.e. no presence of obstacles nor possible disturbances) and a good distribution of anchor 
nodes, as demonstrated in the picture above. 

4.3.5. Posture algorithms for staff wristbands 

4.3.5.1. System configuration 

In the initial stage, an Axivity AX3 accelerometer was used for activities data collection. The AX3 sensor was 
tied at the righthand wrist using a wristband as shown in Figure 20. Also the orientation of the AX3 axis is 
shown, inside and outside the wristband. 
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Figure 18: System configuration 

4.3.5.2. Data collection and features extraction 

The raw data vectors (𝑡, 𝐴𝑥(𝑡), 𝐴𝑦(𝑡), 𝐴𝑧(𝑡)) were collected from the arm attached accelerometer. Then 

more feature vectors (𝐴𝑥𝑦𝑧(𝑡),ᐃ𝐴(𝑡), 𝜑(𝑡), 𝜃(𝑡),) were extracted using the following equations from (1) to 

(4) respectively: 

  𝐴𝑥𝑦𝑧(𝑡) = √𝐴𝑥(t)2 + 𝐴𝑦(t)2 + 𝐴𝑧(t)2    (1) 

  ∆𝐴(𝑡) = |𝐴𝑥𝑦𝑧(𝑡) − 𝐴𝑥𝑦𝑧(𝑡 − 1)|    (2) 

  𝜑(𝑡) = 𝐴𝑡𝑎𝑛 (
𝐴𝑦(𝑡)

𝐴𝑧(t)+0.00001
) ×

180°

𝜋
   (3) 

  𝜃(𝑡) = 𝐴𝑡𝑎𝑛 (
−𝐴𝑥(𝑡)

√𝐴𝑦(t)2+𝐴𝑧(t)2+0.00001
) ×

180°

𝜋
  (4) 

where Axyz is the three dimensional acceleration, ∆A is the absolute Axyz change over a time interval; φ and 
θ are the sensor rotation angles around the X and Y axis respectively. The number 0.00001 in (3) and (4) is 
an adjustment constant studied to avoid the zero divisor in occasion, and also keep the same results for all 
non-zero divisor cases. Thus, there are 7 features (Ax, Ay, Az, Axyz, ∆A, φ, θ) used for the model training and 
testing. 

4.3.5.3. Model training using MLP algorithms 

The multi-layer perceptron (MLP) algorithm is used for NN classifiers training. MLP trains using gradient decent 
with back-propagation. It can learn one or more nonlinear layers (called hidden layers) between the input and 
the output layer. 

In this study, the input 𝑋 = {𝑋𝑖|𝑥1, 𝑥2, … , 𝑥7} = {𝑋𝑖|𝐴𝑥, 𝐴𝑦 , 𝐴𝑧 , 𝐴𝑥𝑦𝑧 , ∆𝐴, 𝜑, 𝜃} and the output 𝑌 =
{𝑌𝑖|𝑦1, 𝑦2, … , 𝑦8} =
{𝑌𝑖|𝑤𝑎𝑙𝑘𝑖𝑛𝑔, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔,𝑤𝑎𝑣𝑖𝑛𝑔, 𝑝𝑢𝑛𝑐ℎ𝑖𝑛𝑔, 𝑓𝑖𝑠𝑡𝑐𝑙𝑒𝑛𝑐ℎ𝑖𝑛𝑔, 𝑠𝑙𝑎𝑝𝑝𝑖𝑛𝑔, 𝑡ℎ𝑟𝑜𝑤𝑖𝑛𝑔, 𝑠𝑡𝑖𝑙𝑙}  

How many hidden layers and how many neurons for each of the hidden layers should we set up for our MLP? 
There are no theoretical answers to this question, so an experiment was done for comparison of the classifi-
cation accuracy using different hidden layers and different neuron numbers at each of the layers. The experi-
mental results are shown in Table 2.   

One hidden layer MLP 

Neuron_No 6 7 8 9 10 11 12 13 14 15 

Acc.(%) 0.69 0.67 0.68 0.70 0.70 0.71 0.69 0.61 0.72 0.71 

Two hidden layers MLP 
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Neuron_No (6,6) (7,7) (8,8) (9,9) (10,10) (11,11) (12,12) (13,13) (14,14) (15,15) 

Acc.(%) 0.71 0.66 0.68 0.70 0.71 0.71 0.73 0.63 0.73 0.73 

Three hidden layers MLP 

Neuron_No (6,6,6) (7,7,7) (8,8,8) (9,9,9) (10,10,10) (11,11,11) (12,12,12) (13,13,13) (14,14,14) (15,15,15) 

Acc.(%) 0.56 0.58 0.56 0.70 0.68 0.54 0.72 0.67 0.72 0.67 

Table 2: Comparison of classification accuracy for different hidden layers and different neuron numbers at each 
of the layers 

   

Table 2 illustrates that two hidden layers with 12 neurons for each of the 2 layers has better performance for 
our human activity classification. Therefore, two hidden layers MLP (12,12) is selected in this study, as shown 
in Figure 21. 

  

  



 D3.1 IoT Enabled Devices and Wearables 1 

Document version: 1.0 Page 31 of 60 Submission date: 2017-12-27 

 

 

Figure 19: Two hidden layers MLP used in this study 

Where the 𝑤𝑖,𝑗 values are called weights. They represent the "strength" of the connection between two neu-

rons. Bias nodes (b1, b2, b3) are added to increase the flexibility of the model. Specifically, it allows the network 
to fit the data when all input features are equal to 0. The value of a bias node is set to 1 without regard for the 
data in a given pattern. 

MLP learns the function y = f(x,w) from Eq. (5), and calculates the probabilities of the sample 𝑥𝑖  belonging to 

each of the 8 class. The output is the class with the highest probability: 

𝑦 =∑𝑤3,𝑘 ∙ 𝑓2(∑𝑤2,𝑗

12

𝑗=1

∙ 𝑓1 (∑𝑤1,𝑖

7

𝑖=1

∙ 𝑥𝑖 + 𝑏1) + 𝑏2) + 𝑏3

12

𝑘=1

(5) 

where w1, w2 and w3 are the weights of the input layer, first and second hidden layers respectively; b1, b2 and 
b3 are single bias nodes added for the input layer, first and second hidden layers respectively. The f1 and f2 
are the activation functions applied for the two hidden layers respectively. 

For multi-class classification the softmax function is used as activation function f1 and f2, which is written as 
Eq. (6): 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖 =
exp⁡(𝑧𝑖)

∑ exp⁡(𝑧𝑖)
𝑘
𝑖=1

(6) 

  

where zi is the ith element of the input to softmax, which corresponds to class i, and k is the number of classes. 

The weights (w) start from initial random values, then MLP updates these weights repeatedly using the loss 
(or error) function. In a multi-classification problem, the logarithmic loss function (Log Loss) is used and defined 
as (7). After computing the loss, a backward pass propagates it from the output layer to the previous layers, 
providing each weight parameter with an update value aiming to decrease the loss. In order to calculate Log 
Loss, the classifier must assign a probability to each class rather than simply yielding the most likely class: 

𝐿𝑜𝑠𝑠(𝐿, 𝑦) = −
1

𝑠
∑∑𝐿𝑖,𝑗

𝑐

𝑗

𝑠

𝑖

𝑙𝑜𝑔𝑦𝑖,𝑗(7) 

where s is the number of training samples, c is the number of classes, y is the predicted value and L is the 
target value. The minus sign at the beginning aims to minimise the function result as positive values, since log 

of a number (𝑦𝑖,𝑗) between 0 and 1 is negative. 

Log Loss quantifies the accuracy of a classifier by penalising false classifications. Minimising the Log Loss is 
basically equivalent to maximising the accuracy of the classifier. For example, if the prediction (yi,j) is very 
close to 1 then log of that number will be very close to zero, which means the error for that particular case will 
be very close to zero. 
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4.3.5.4. Plurality voting algorithm 

In order to improve the activity classification accuracy and robustness, a plurality voting algorithm (pluralityVA) 
was used to adjust the predicted result by an original classification algorithm (originalA). The originalA can be 
any of the machine learning algorithms. In this case MLP has been introduced. Details of this pluralityVA 
algorithm is described below: 

(4) There exists a classifier that defined a list of class labels𝐿 = [𝑙1, … , 𝑙𝑐], where c is the total class 

number 

(5) The predicting result by the originalA is denoted as a list 𝑃 = [𝑝1, … , 𝑝𝑛], where for all 𝑝𝑖 ∈ 𝐿, and n 

is the sample number of the testing set in total 

(6) A window size is set as 1 s period of time (25 samples in this study). Count the number of each class  

𝑁𝑙𝑖  (𝑁 = [𝑁𝑙1, , … , 𝑁𝑙𝑐]) for every sliding window (w) from the predicted result 𝑃(𝑤) in (8) 

(7) Obtain the relevant majority class label key in (9), and use this key value to replace all values in 

𝑃(𝑤)using 𝑃𝑝𝑙𝑢𝑟(𝑤)  in (10). 

∃

{
 
 

 
 𝐿 = [𝑙1, … , 𝑙𝑐]

𝑃𝑜𝑟𝑖𝑔 = [𝑝1, … , 𝑝𝑛], ∀𝑝𝑖 ∈ L

𝑤 = 1𝑠 = 25𝑠𝑎𝑚𝑝𝑙𝑒𝑠
𝑁 = [𝑁𝑙1, , … , 𝑁𝑙𝑐]

 

    𝑁 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟(𝑃(𝑤) = [𝑝𝑖, … , 𝑝𝑖+𝑤]|𝐿)(8) 

              𝑘𝑒𝑦 = 𝑙𝑖: max(𝑁) (9) 

    𝑃𝑝𝑙𝑢𝑟(𝑤) = [𝑘𝑒𝑦] ∗ 𝑤(10) 

Using the pluralityVA algorithm can improve the robustness of the overall system, since it sets up the same 
class label using a relevant majority class value for every sliding window P(w), thus reducing the number of 
possible miss-classified samples. 

4.3.5.5. Experiments 

Data from 17 subjects were collected. All subjects performed 8 actions thus there are 8 classes: {walking, 
running, waving, punching, fist clenching, slapping, throwing, still}. The experimental results were validated 
against synchronised videos, recorded with 3 cameras installed on the ceiling or top of a wall. 

The experiment protocols were performed as follows: first, the subject 1 (sub1) performed the 8 actions in a 
stated order and the collected dataset saves into a file as singSub. Subsequently the 17 subjects (sub1~sub17) 
were organised in two groups (5+12), and each of the 2 groups performed the 8 actions at the same time twice 
in the stated order and in a random order respectively. In total 35 datasets (1+17*2) have been collected, 
organised as different types of training sets and testing sets as shown in Figure 22. 

 

Figure 20: Datasets organisation 
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The 35 datasets were collected from 17 subjects and organised as three types of training sets (in red colour) 
with three types of models (in blue colour) and three types of testing sets. 

Three types of training sets and testing sets were organised in different ways as shown in Table 3. Three types 
of models (singM, pComM, fComM) were trained based on three corresponding training sets respectively. 

Experimental results were demonstrated and compared in Table 3, which demonstrates that the classification 
accuracy is improved decisively by using the pluralityVA, compared to each of the 3 models. For example, it 
is 92% vs. 76% compared to singM for the sTraTes set. 

Testing sets Algorithms Classification accuracy for three models 

singM pComM fComM 

sTraTes originalA 0.76 0.75 0.73 

pluralityVA 0.92 0.91 0.90 

traTes originalA 0.42 0.49 0.54 

pluralityVA 0.50 0.57 0.67 

newTes originalA 0.40 0.48 0.53 

pluralityVA 0.47 0.58 0.64 

Table 3: Three types of testing sets classified by 3 models and compared between originalA and pluralityVA al-
gorithms 

 

The fully combined model fComM has better performance for the two testing sets traTes and newTes. How-
ever, the single model singM has the best result for the single testing set sTraTes. For example, the three 
models singM vs. pComM vs. fComM is 47% vs. 58% vs. 64% for the newTes set, is 50% vs. 57% vs. 67% 
for the traTes set, and is 92% vs. 91% vs. 90% for the sTraTes, using the pluralityVA algorithm.  

A plurality voting mechanism can be used to adjust the original prediction result for improving the robustness 
of the overall system. Every subject has a different performance for the same action, for example, somebody 
performs a slapping action with a stretched arm, while some others do this with a bent arm. For this reason, 
training an individual model is a very efficient way for improving the system robustness and reliability. 

For example, Figure 23 shows a punching action scenario. It shows a frame of the synchronised video screen-
shots and the corresponding Ay signals. For clarity, only 4 subject Ay signals are shown in this figure. These 
signals illustrate that different subjects have a different behaviour even though they perform the same action 
(punching in this case). Hence, how to train a model for different subjects is a challenging task. 

 

 

Figure 21: Synchronised frames and accelerometer Ay signals for a punching action 
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The activity classification results can be saved into a file, while can be visualised using acceleration signals (in 
this case only a Ay signal is used). Figure 24 illustrates the synchronised frames and visualised experimental 
results that are classified by using the two hidden layers MLP (12,12) with the introduced pluralityVA 
algorithms. 

 

 

Figure 22: Synchronised frames and visualised experimental results for 8 actions, using MLP with pluralityVA 
algorithms 

 

 

 

Figure 23: ROC curves for 3 types of testing sets (sTraTes, traTes, newTes) 

Figure 25 illustrates the experimental results for three different testing datasets (sTraTes, traTes, newTes) 
using receiver operating characteristic (ROC) curves, which can show the trade-off between sensitivity and 
specificity for each of the 8 classes. For the sTraTes dataset (left figure), there are 3 curves (C8, C1, C6) in 
the ideal position (top left corner of the figure) and these curves also have highest steepness, which means 
these 3 classes got excellent prediction to maximise the true positive rate while minimising false positive rate. 
The area under the curve (AUC) is a measure of predicted accuracy for each of classes. An area of 1 repre-
sents a perfect prediction; an area of 0.5 (the diagonal line) represents a random prediction (worthless). There-
fore, for the sTraTes set, the AUC for most of classes are more than 0.9, it is excellent prediction. However, 
for the traTes and newTes datasets, only class 8 and class 1 got an excellent prediction, most of the classes 
got a good (AUC >0.8) or fair (AUC > 0.7) prediction. 

4.3.6. Anchor calibration 

After the anchors are installed in their proper location and everything is powered and running, the system 
needs to be configured. Configuration is done by pointing a browser to a URL hosted by the Meerkat. The 
Meerkat runs a web server to configure and monitor the entire system. The following phases need to be com-
pleted before the system is fully functional: 
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• Anchor localisation 

• Coordinate alignment 

The position of the anchors can be found by completing a distance matrix including distances between all 
anchors. Based on the distance matrix, the anchors positions are calculated using an optimisation procedure. 
This optimisation procedure minimises the error between the measured and the calculated distances. The 
calculated distances are derived by applying the Euclidean distance formula that takes as input the estimated 
positions. The optimisation of the positions of the seven anchors took a couple of minutes. Simulated Anneal-
ing (S. Kirkpatrick et al. 1983) is used as the optimisation algorithm. It is worth highlighting that the anchors’ 
positions will be expressed according to a relative reference system that depends on the optimisation algorithm 
and its initial parameters. 

After the anchors’ positions are determined, the reference system set by the optimisation algorithm can be 
aligned according to a user defined reference system. This step is not mandatory, but it helps in reasoning 
about the tracked tags positions as visualised on the screen. The coordinate alignment works by marking three 
known points in the area, typically the origin (0, 0) and two other points. These points can be measured using 
a (laser) measurement tool. After the coordinates of the marked points are measured, the values can be en-
tered into the alignment tool offered by the web interface. Subsequently, three tags need to be positioned on 
the three points at a fixed height (z-axis). The system will figure out automatically which tags correspond to 
which three entered positions. Subsequently, the initial coordinate system (determined by the optimisation 
procedure) will be levelled to the user defined coordinate system.  

Figure 24: Result of the automatic anchor positioning procedure 

The result of the anchor positions after the optimisation procedure is shown in Figure 26. As it can be observed, 
there is a symmetric matrix reporting the distances between the anchors while the colour reflects the distance 
error calculated as the difference between the measured and the calculated distances. More specifically, a 
bright green colour means that the distance error is smaller than 2 cm, an orange colour means that the error 
is larger than 20 cm and red colour error indicates errors larger than 50 cm. 

4.3.6.1. UWB-based simulator 

The UWB-based simulator is composed by two types of MATLAB-based software. The first is based on the 
simulator presented in section 4.2.8 but set with the ToA approach as ranging technique with the respective 
parameters describing the UWB measurements model. In particular, it is used to simulate and evaluate the 
behaviour of the PF in section 4.3.4.5. The second simulator aims to simulate and evaluate the behaviour of 
the EKF with outlier mitigation in section 4.3.4.4 and to benchmark it with a traditional EKF (Caceres et al. 
2009). Both of them implement the same dynamic model (PV model). Its main features are random generation 
of outlier measurements and profile generation for the kinematics modelling. In particular, the outlier measure-
ments are generated adopting two p.d.f., Gaussian and Uniform distributions respectively. Thanks to the kin-
ematics modelling, the simulator provides tracking parameters such as: acceleration, speed, location and atti-
tude, for a mobile node. These parameters are generated by defining segments which are classified as con-
stant-velocity straight, constant-acceleration straight, constant-altitude and constant-radius turns. 

4.3.7. Integration of staff wristband into the IoT middleware 

Same as integration of crowd wristbands (see section 4.2.9.). 
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4.3.8. Services enabled by staff wristbands 

4.3.8.1. Security staff localisation 

The staff wristbands allow for the localisation of staff members. As such they help to implement several use 
cases. Besides staff localisation the wristbands can be used to notify staff members by sending text messages 
that are displayed on the LED screen of the wristband. 

4.3.8.2. Health/security incidents 

By leveraging the IMU of the staff wristband certain health incidents can be detected. A wrist-worn accelerom-
eter is used for recognition of abnormal activities related to stewards and visitors in crowded environments. 

4.3.9. Preliminary testing of UWB at Kappa FuturFestival 2017 

This paragraph reports on the ultra-wide band (UWB) tracking test that has been performed during the prepa-
ration of the Kappa FuturFestival (KFF) in Turin on the 6th and 7th of July 2017 and the first day of the KFF 
event on the 8th of July 2017. The deployment of the system and initial tests started on Thursday July 6th. In 
particular, the installation involved liaising with the KFF organisers to find the best positions of the fixed nodes 
in such a way the devices did not hinder the passage of people. An additional day was allocated to the setup 
time frame in case of unexpected setbacks and delays. Various tests have been performed on July 7th as well. 
On Saturday July 8th the festival was up and running as from noon. This paragraph describes the test area, 
the test setup, the calibration procedure, the test results and conclusions. 

4.3.9.1. Test area and setup 

 

Figure 25: Blueprint, anchor locations and dimensions of the main backstage test area 

The assigned test area is the so called “main backstage” area, see Figure 17. This is the area behind the main 
stage (Jäger stage). This area is designated for production, hospitality, first aid, storage and it contains the 
artist area. The backstage area contains a couple of structures, including (office) containers, power generators 
and tents. The area is located under the characteristic old factory roof. The area is not crowded with people, 
although there was a reasonable “activity” with people moving around during the event. The locations of the 
seven anchors are indicated by the green diamond shapes. 

For the test, seven UWB anchors were deployed (see Figure 17 for the locations). The anchors were mounted 
on tripods with a height of 4m. Six of the seven anchors were powered by using a power bank battery. Besides 
power and a UWB interface, no additional (network) connections were required for these six anchors. One 
anchor was designated as the  master anchor. The master anchor was connected to a Power over Ethernet 
(PoE) switch providing power as well as network connectivity. A router was connected to the same switch to 
provide a DHCP server. In addition, a small Linux server (Meerkat from System76) was connected to the same 
switch acting as the wristband gateway (GW) (in line with the MONICA architecture). Finally, a Macbook Pro 
laptop was connected to the switch to visualise the tracking results and for configuration purposes. 

Testing entailed tracking of a set of small battery-powered UWB tags. Every tag continuously communicated 
via the UWB radio with the anchors to determine the range to each of the visible anchors. All the collected 
ranges from anchors were sent to the master anchor (wirelessly, using the UWB radio). The master anchor 
published the collected ranges in a UDP packet. An application running on the Meerkat consumed this UDP 
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packet. Subsequently, the position, based on the available tag-anchor distances was calculated on the Meer-
kat itself using an Extended Kalman Filter (EKF) algorithm. The application on the Meerkat also provided a 
web-based application that was used for visualisation and configuration. A browser running on the Macbook 
was used to connect to the application running on the Meerkat. 

Figure 26: Setting up the anchors in the test area 

Setting up the seven anchors, the network and the server, after approval of the positions, took about one hour. 

4.3.9.2. Test results 

During the three test days several more tests have been performed. The results reported here summarise the 
most important findings. Since all the tests have been performed in an area that was not crowded, it is difficult 
to extrapolate these results to crowded areas. 

 

Figure 27: Tracking of a walk through the artist area 

Figure 19 shows a “walk” through the artist area. The screenshot also shows different (green) lines between 
the tag and each of the anchors representing the UWB connectivity. In the top part of the screen the distances 
and signal strengths (RSSI) are shown in a table together with the current tag position and speed. On the 
bottom part of the screen, various time plots are depicted showing distances over time to each of the seven 
anchors. In particular, the blue points show the calculated distances (from the current estimated position), 
while the green points are the time-corresponding measured distances by using UWB messages. An orange 



 D3.1 IoT Enabled Devices and Wearables 1 

Document version: 1.0 Page 38 of 60 Submission date: 2017-12-27 

point means that a possible non line of sight (NLOS) situation has occurred which means that the line of sight 
between the tag and the corresponding anchor was blocked. A blocked object may cause attenuation of the 
signal or the ranging of a secondary (due to reflection) path. Both result in a measured distance that is too 
inaccurate. The NLOS determination tries to mitigate this situation by disabling the use of the anchor that has 
NLOS in the calculation of the position. 

The official test area only measured 40 m x 40 m. The seven anchors were positioned at the edges. However, 
the tracking system also allows for tracking tags outside this area. The size of this extended area depends on 
the communication range between the tag and the anchors. As long as at least three anchors can be “seen” 
by the tag, the position can be calculated in two dimensions (i.e. x,y). This is shown in the following screenshot. 
The person with the tag went outside of the test area (going from the back stage to the front of the stage, public 
side). Two different ways of holding the tag have been used: (1) making sure that the tag is never blocked by 
a body (2) making sure that the tag is always blocked by a body. It is shown that the first situation results in a 
better range, i.e. the tag can be tracked at longer distances. In the first situation the tags is still tracked at 
distances 80 m away from the nearest anchors. In the NLOS situation, the tag is “lost” much sooner. 

4.3.9.3. Conclusions 

The results show that it is perfectly feasible to track persons in large areas using UWB. The accuracy of the 
tracking is well within 1 m, which seems to be a reasonable figure for the crew tracking use case. A major 
advantage of this tracking method compared to e.g. GPS is accuracy and independence of mobile network 
infrastructure. The UWB infrastructure is completely under self-control without any third party dependencies.  

Since a Kalman filter is used, which will keep on predicting new positions even in the absence of new meas-
urements, it can happen that completely false paths are reported. It would be better to show the last estimated 
position based on at least three recent measurements instead of showing a completely artificial predicted 
position. This will be changed in the next version of the algorithm. 

NLOS mitigation is a very important requirement that will need more work. Implementing more localisation 
algorithms is also something that will be useful in selecting the right localisation method for this use case. 
Besides the current Kalman Filter, a FIR- (Finite Impulse Response) and a PM (Particle Method) filter will be 
implemented and tested within the Task 3.4 activities. The data collected during this measurement campaign 
can be used to test these new algorithms on exactly the same benchmark data. 

The current maximum number of anchors that can be supported with one master is 16. For larger areas mul-
tiple masters need to be used. We will work on supporting multiple masters in our software such that for a 
large scale deployment more than 16 anchors can be used. 

With respect to ease of installation, several things can and need to be optimised. The anchors need to be able 
to run for several days, therefore a high capacity battery is needed that can be easily charged as well. An IP67 
grade battery/charging unit will be developed for the next deployment. In addition, IP67 grade anchors will be 
used instead of the indoor anchors that have been used in this test. 

Since all the tests have been performed in an area that was not crowded, it is difficult to extrapolate these 
results to crowded areas. Additional tests are needed to gain insight on tracking in crowded areas. 

4.4. Smart glasses 

ORA-2 Smart Glasses are fully produced by Optinvent. The product allows a Full See-through feature (Trans-
parent display) for a mobile wearable device. The ORA-2 product uses proprietary & patented Optinvent’s 
Display technology. 

4.4.1. Technology overview 

ORA-2 is a full standalone Android device that could run any Android application and connects smoothly to 
any other device. 

Here is a summary of ORA-2 product features: 

• Standalone wireless product with embedded battery, weight ~90 g 

• Runs generic Android Kitkat (4.4.2) and has open platform to create and execute any Android applica-
tions. 

• Use Arm 9 Dual Core 1.2GHz processor with GPU & 5.3 Gb Storage Memory and 1Gb Flash Memory 
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• Track pad on rigid side of the frame (True Mouse not only swipe) 

• Embedded 1200 mAh rechargeable battery 

• Can be worn over most of the user’s glasses 

Has the following sensors: 

• 5 megapixel Auto-Focus camera 

• Light sensor to adjust automatically display brightness to environment brightness 

• Active GPS 

• 9 axis sensors (Gyro/Accelerometer/Compass; MPU9250 from Invensens) 

• Low noise microphone and mono audio out through µUSB provided accessory 

Connectivity: 

• WiFi b,g,n; 2.4GHz 

• BT 4.0 Low Energy 

• µUSBS 2.0 for charging, data exchange and transporting mono audio to an audio headset accessory 

Display: 

• See-through Display Feature with 50% photopic transparency 

• 800x480 pixels native resolution RGB colour display with 42 pixel/deg 

• Field Of View of 22deg with Flip-Vu feature to move the image location 5deg up, centred to eye sight 
and 20deg down 

• High brightness 

 

 

Figure 28: ORA-2 Product - Android standalone Smart Glasses eyewear 

4.4.2. Services enabled by smart glasses 

Communication with app, UWB wristband using BLE Show position based context on screen. 

• Position from UWB + heading from smart glass 

• ORA-2 could host any service already developed on Android smartphone & tablet. Optinvent already 
developed several services such as: 

• Specific launcher to better navigate between applications with large icons 

• Specific service to control the glasses wirelessly from an Android smartphone screen 

• Others free service to connect, manage the glasses with PC as well as with other devices 

4.4.3. Integration of smart glasses with staff wristbands 

ORA-2 could be connected to the wristbands platform by BT. However, a specific application should be built 
to allow both devices to have access to service in real time. 
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4.4.4. Integration of glasses into the IoT middleware 

The ORA-2 glasses act primarily as a user interface device, i.e. running MONICA apps that the wearer interacts 
with. But it could also provide data from the built-in sensors that can be fed to the MONICA cloud. Examples 
of possible data sources are positioning from the GPS and data from the accelerometer. 

The integration of ORA-2 with the MONICA IoT middleware should not present any problem, as it could be 
considered as a standalone Android device with WiFi & BT connectivity. So the integration would be done in 
the MONICA app that runs on the ORA-2 devices. 
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5. IoT Enabled Devices 

5.1. Introduction 

This section describes the work done within T3.5 IoT Enabled Devices until M12. The main objective of T3.5 
is to provide integration of both fixed and nomadic devices into IoT enabled devices ready to integrate with the 
MONICA platform. 

Figure 29: MONICA Architecture 

Figure 29 shows the MONICA architecture, the work in T3.5 covers the part between the Device Layer and 
the IoT Layer. Depending on devices and functionality this involves “pure” devices as well as edge layer func-
tionality. The basis for the MONICA IoT infrastructure is OGC SensorThings API, all the data handled in the 
IoT Layer is modelled according to this standard, see D3.3 IoT Secure Network Infrastructure and Semantic 
Middleware for a complete description. 
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Figure 30: OGC SensorThings Model 

The OGC SensorThings API Model, see Figure 30, is not sensor centric, it rather focuses on the things that 
are to be monitored. A thing in the MONICA case could, for instance be, guard A. For each thing there can be 
several sensors providing data-streams for different properties of the thing. Another thing to note is that the 
location is a special entity in the model, also providing historical locations. In MONICA the things that move 
we will not use this part of the model, the position will rather be treated as any data stream which makes it 
easier to handle at the data storage level without introducing a special position history. 

In order to manage heterogeneous devices and inputs in MONICA the SCRAL provides an adaption layer for 
IoT devices and streams, transforming data to comply with OGC SensorThings as well as adding additional 
metadata according to the MONICA standard. Depending on the capabilities of the devices and the processing 
nodes in the Edge Layer, more or less adaptation is needed.  

The following sub sections will describe the current state of the set of devices that are enabled to be part of 
the MONICA platform, but we foresee that additional devices will be added during the project duration. As 
soon as devices and their services are defined the actual IoT integration will be done. Devices that are already 
deployed at the pilot sites are not included but will depend on what is available at pilot sites and the selection 
of functionality deployed for a specific pilot. The same applies to external open data sources, such as weather 
services, that can be part of the MONICA platform. 

5.2. Cameras and processing nodes 

Detection of relevant events from video is enabled by running video analysis algorithms on the video streams 
in real time. Depending on the implementation of the analytics algorithm, it requires a specific amount of pro-
cessing power to run in real time. 

Whereas lightweight algorithms can run on the low-power CPUs embedded inside the cameras, some of the 
more advanced algorithms that implement computationally expensive approaches (such as fighting detection, 
crowd density estimation, etc.) cannot. These more expensive algorithms can only be run on a processing 
node with its more powerful processing abilities. 
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5.2.1. Technology overview 

5.2.1.1. Cameras 

Cameras with embedded analytics are available from VCA in two main modalities: monocular (regular CCTV 
cameras), and time-of-flight. Each camera type offers a range of video analytics with varying accuracies. The 
cameras feature an event alerting engine, that can send video and alerts in a range of formats such as HTTP, 
TCP, SMTP for integration into other layers of the MONICA architecture. Video is streamed in a range of 
formats including MJPEG over HTTP and H.264 over RTSP/RTP. Detailed technical specifications of all cam-
eras are available in technical datasheets from the VCA website (VCA, 2017). 

 

 

Figure 31: Monocular CCTV camera with embedded video analytics 

  

 

 

Figure 32: Time-of-flight depth camera with embedded video analytics 

  

The monocular cameras support a range of video analytics functions such as people counting, intrusion de-
tection, loitering detection, etc. The time-of-flight cameras support highly accurate people tracking and can 
thus be used for accurate people counting and queue management. 

While the monocular cameras with embedded analytics can offer good performance in constrained scenarios, 
they suffer from reduced accuracy under certain conditions such as crowded scenes, low light and severe 
occlusions. Time-of-flight cameras are not subject to the same limitations: they project a beam of infrared light, 
and measure the phase shift of reflected light, in order to build up a 3-dimensional point cloud consisting of 
horizontal and vertical displacement (x, y), as well as distance from the camera, depth (d). 
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Figure 33: Phase shift of reflected light used to calculate the distance of objects from the sensor 

 

 

Figure 34: (a) Infrared illumination image (b) Depth image (c) Illumination variation across the image for the se-
lected horizontal line (d) Depth variation across the image for the selected horizontal line 

 

 

Figure 35: Three-dimensional point cloud showing x, y and depth values for each pixel 

Since the time-of-flight sensor provides depth data for each pixel, it thus becomes much easier to resolve 
occlusions and track people accurately, even in cluttered and highly dynamic scenes. 
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5.2.1.2. Processing nodes 

The specific hardware of the processing nodes can be relatively flexible: basically the more processing power 
required, the more/more powerful hardware can be installed. Nevertheless, VCA has a commercial appliance, 
the VCAbridge, which is a standalone hardware unit running a video processing framework that handles all of 
the monotony of interfacing with various cameras, and sending events off to third party systems. 

 

Figure 36: VCAbridge Processing Node 

The current version of the VCAbridge runs on an Intel i3 platform. However, with recent advances in deep-
learning and the corresponding processing requirement to run on Graphics Processing Units (GPUs), VCA 
has started porting the processing framework to an embedded GPU, the nVIDIA TX1/2. 

 

 

Figure 37: nVIDIA TX2 embedded GPU single-board-computer (SBC) 

Therefore, some of the more demanding video analytics algorithms can be deployed on embedded GPU sys-
tems. An embedded GPU version of VCAbridge allows a specific installation at any given pilot event to rapidly 
up- and down-scale, depending on the number of cameras required, simply by adding or removing VCAbridge 
processing node units. 

5.2.2. Infrastructure for cameras and processing nodes 

The cameras and processing nodes both require power (12VDC for nodes POE, POE+ for cameras and 
time-of-flight cameras) and network connectivity (typically wired). 
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5.2.3. Services enabled by cameras and processing nodes 

This section provides an overview of the services enabled by the cameras. For a more detailed description, 
please refer to deliverable 5.1 - Sensor Analytics and Information Fusion, which provides an in-depth on the 
current status of all camera analytic functions. 

5.2.3.1. People counting (CCTV cameras) 

Entrance/exit counter, up to 95% accuracy with adequate lighting in overhead installations. 
Can be used to count people through gates to manage venue capacity or get an estimate of how many people 
are in a specific area of a venue. 

5.2.3.2. People counting (Time-of-Flight cameras) 

Entrance/exit or small area counting. Up to 99% accuracy. Has active illumination so can be used in a wide 
range of scenarios. 

5.2.3.3. Fighting detection (Processing Node) 

Can detect fighting in a range of scenarios. Raises an alert that can be used to direct a guard to diffuse the 
situation. 

5.2.3.4. Object & human detection (Processing Node) 

Detect and track humans and other relevant objects. Can be used for detecting the presence of a people in a 
specific area, or estimating a crowd count. Can be used for detecting e.g. vehicles in restricted areas. 

5.2.3.5. Crowd density estimation (Processing Node) 

Estimates the density (in terms of number of people) of a crowd. Can be used to manage venue capacity 
management or detect overcrowding in a specific area (e.g. queues).  



 D3.1 IoT Enabled Devices and Wearables 1 

Document version: 1.0 Page 47 of 60 Submission date: 2017-12-27 

5.2.4. Integration of cameras and nodes into the IoT middleware 

For those algorithms that can run directly on the cameras, the cameras can communicate directly with the IoT 
middleware. However, due to the legacy nature of the camera APIs they are unable to natively interact with 
the middleware so an integration bridge has been developed that translates from the cameras event message 
format to the RESTful format required by the upper layers in MONICA. This is a simple Python script that can 
run almost anywhere, but for the purposes of the previous integration demonstrations has been installed on a 
Raspberry Pi Model 2B on the local network attached to the cameras. 

 

 

Figure 38: Demonstration of Time-of-flight camera for real-time tracking and counting with MONICA bridge run-
ning on a Raspberry Pi on the local network 

For those algorithms that are too heavyweight to run directly on the camera and have to run on the processing 
nodes, the video processing framework has been extended to support a templated notification system. The 
notification system allows the format of any notification to be specified via a template language, as illustrated 
in Figure 39. 

Figure 39: A templated alert that sends real-time count values from the processing node to the MONICA middle-
ware 

In MONICA the actual video streams will not be transmitted in to the MONICA cloud, only metadata that allows 
local connections to the video feed will be implemented, i.e. the cloud will contain meta data information that 
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enables connection to the video stream locally. However, snippets of video can be pushed to the MONICA 
cloud. 

The services output, i.e. people counting et c., will create data streams that is pushed up in to MONICA cloud 
using the SCRAL component. 

5.2.5. Future work 

The main objectives for the future work with regards IoT middleware integration of cameras and processing 
nodes is to: 

• Add functionality for automatically creating metadata, both for the actual cameras as well as for the 
recognised security incidents. For instance, the area the camera currently covers. 

• Align the content of the data streams with the IoT Resource ontology with regards to identification and 
metadata. 

• Model the services output and connect the outputs to the SCRAL. 

• Investigate possibilities of creating generic links that can be used for accessing existing surveillance 
video storage systems at the pilot sites. This can be very useful for improving the recognition algorithms 
as well as for post event analysis. 

5.3. Microphones / Sound level meters 

A sound level meter (SLM) is a device consisting of a microphone, data storage, processing and a communi-
cation interface. The sound level meter can (of course) calculate the sound level, but also record and transmit 
the raw sound signal and act like a microphone. In the rest of this chapter the term sound level meter will be 
used to also cover microphone usage. 

Deliverable D4.4 contains a more thorough description of the sound level meter and the services it enables. 

5.3.1. Technology overview 

The sound level meter is an autonomous device, which does not depend on an infrastructure. It will basically 
record the sound, potentially do data analysis and data reduction, store and transfer the results. 

The analysis in the device is mainly the common standardised sound level calculations with various weighting 
filters (like A-weighting) and averaging intervals.  

The sound level meter incorporates a GPS receiver which enables information of the location of the sound 
level meter to be read, but also to time stamp data from the sound level meter, which enables time alignment 
of data from several devices. 

The sound level meter can connect wirelessly to an SLM Gateway using WiFi or 3G/4G.  

Communication and data form the sound level meter to the MONICA cloud goes through the SLM Gateway 
by using a REST interface implemented in the SLM Gateway. 

The SLM Gateway contains processing capabilities, which enables services that uses input data from several 
sound level meters and which can further reduce the data, before transferred to the MONICA cloud. 

5.3.2. Infrastructure for microphones/sound level meters 

The sound level meters are battery driven and should be able to run without external power for 8 hours. Ex-
ternal power will have to be provided if longer operation is needed. 

The sound level meter communicates with the SLM Gateway using either WiFi or 3G/4G, which means either 
should be available for the meters to operate. The needed bandwidth depends on the mode of operation. Most 
demanding scenarios are those which require raw microphone signals (around 2 Mbit/sec). 

5.3.3. Services enabled by microphones/sound level meters 

5.3.3.1. Sound heat map 

Combining the sound levels recorded by the microphones with a computational sound propagation model, the 
signals from the PA system used in the concert and the weather conditions measured (wind, temperature and 
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humidity), the sound field produced for such a PA system is calculated. This map covers the area of the venue 
and the surrounding neighbourhoods, giving an overview of the levels during the concert. 

5.3.3.2. Sound levels 

Historical sound levels measured at the location of the sound level meter(s) can be retrieved within a specified 
time interval. 

5.3.3.3. Contribution analysis 

Measuring the sound level in the vicinity of an outdoor event like a concert will also include the sound from 
other sources, like cars driving by. By placing one or more sound level meters close to the concert, this service 
enables that the contribution from that concert can be separated at any other location where a sound level 
meter is placed, and the sound level caused by the concert at that location estimated. 

5.3.3.4. Sound event detection 

The SLM Gateway can be trained to automatically detect specific events from the recorded sound, like gun 
shots, screaming people and accelerating cars.  

Information about event type, location and time will be sent to the MONICA cloud. 

5.3.3.5. Integration of microphones into the IoT middleware 

The sound level meters are interfaced into the MONICA cloud through the REST interface on the SLM Gate-
way. For details please see Deliverable D4.4. 

5.3.5. Future work 

The IoT enabled sound level meters are being developed during the MONICA project. Two prototype versions 
will be produced, where the first version will have reduced functionality and a more “bulky” configuration. 

In between the first version (D4.4) and the second version (D4.5) more features will be enabled as they are 
finalised. 

The main objectives for the future work with regards IoT Middleware integration of sound level meters is to: 

• Integration of the SLM Gateway to the SCRAL using the SLM Gateway API 

• Add functionality for automatically creating metadata, both for the actual sound level meters as well as 
for the recognised sound events. For instance, the position of the microphone. 

• Investigate if we should mirror the historical data in the sound level meter in the MONICA cloud or if we 
can use the historical data through the sound level meter. 

• Align the content of the data streams with the IoT Resource ontology with regards to identification and 
metadata. 

• Model the services output and connect the outputs to the SCRAL so it will become available as data 
streams in the MONICA cloud. 

5.4. Environmental sensors 

5.4.1. Technology overview 

In many of the MONICA pilots we expect that environmental sensors will be used. For instance, the wind speed 
is useful for the sound propagation models. We expect some of this data to be available from open data 
sources but depending on the needs of granularity and update rates there will be need for MONICA to deploy 
its own sensors or to reuse existing sensors on the pilot sites. 

For the locally deployed environmental sensors a proof of concept installation was made as part of the M9 
demonstration. The main purpose of the proof of concept was to showcase how IoT devices can easily be 
integrated with the MONICA backend cloud. At this stage we have not selected which sensors to use in actual 
deployments. The selection will depend on which pilots will require locally deployed MONICA sensors.  
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5.4.2. Infrastructure for environmental sensors 

This is not decided yet since the sensor devices have not been chosen. In the proof of concept, a local wireless 
MESH network was used, see 5.4.4. In any case we do not believe that the infrastructure requirements are 
high because of the low bandwidth needed for transmission of data. 

5.4.3. Services enabled by environmental sensors 

5.4.3.1. Environmental data 

Provides environmental data such as wind speed, temperature, humidity etc. 

5.4.4. Integration of environmental sensors into the IoT middleware 

A proof of concept demo was developed for the M9 demonstration to showcase how sensor nodes could 
easily be integrated with the MONICA cloud standard interfaces – namely the SCRAL middleware and the 
One M2M gateway – using open standard IoT technologies, protocols and software.  
 
The basic idea is as follows: a sensor node makes periodic measurements (e.g. of environmental conditions) 
and sends acquired sensor data to the backend, which provides a web service with a RESTful API to 
process and store the measurement data. The IoT devices send their JSON encoded sensor data via CoAP 
5to the field gateway which translates from CoAP to HTTP and relays the data to the backend. Note, that 
CoAP is specifically designed to support RESTful services in constrained networks, i.e., it is compatible with 
HTTP but does not support all its features and is based on UDP instead of TCP. Hence, its rather simple to 
translate from CoAP to HTTP when using RESTful APIs. 
 

 
Figure 40: Proof of concept deployment 

The demo consisted of three major components, see Figure 40:  

• IoT sensor nodes 

• field gateway 

• MONICA cloud 
 
For the sensor nodes, we used the IoT development board PhyNode from PHYTEC as our hardware platform 
and an application based on the Open Source IoT operating system RIOT6. For network connectivity, each 
sensor node is equipped with a low power radio transceiver that supports IEEE 802.15.4. 
The field gateway is a Raspberry Pi 3 with a IEEE 802.15.4 transceiver to communicate with the sensor nodes 
as well as (W)LAN for Internet connectivity. On the software side we use standard Raspbian Linux and a 
CoAP-to-HTTP proxy implementation to relay data from sensor nodes to the backend.  
The MONICA backend is provided either by the SCRAL middleware or a OneM2M gateway, both providing a 
RESTful web service API. These cloud services are deployed on the Internet and are accessible through well-
known URLs.  
The sensor data is encoded as JSON using a custom syntax that is based on SenML, a sample sensor data 
record for air pressure looks like the following: 
 

                                                
5 The Constrained Application Protocol (CoAP) https://tools.ietf.org/html/rfc7252 
6  RIOT-OS https://riot-os.org 
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{"bn":160,"bl":[53.56,10.02,1.00],"n":"P","v":1016.57,"u":"hPa"} 
 
With the following attributes: node ID (bn), its location (bl), the type of sensor (P = pressure), the value (v), and 
unit (u). 
 
The proof of concept contains several sensor nodes that send data with a RESTful POST request using 
CoAP+UDP to the Raspberry PI (field gateway) which relays the data as HTTP+TCP to the backend. It is 
worth noting that each sensor node as an IPv6 address assigned and the field gateway merely acts as a 
network interconnect to bridge network traffic from IEEE 802.15.4 to the Internet (LAN) and translate from 
CoAP to HTTP. Hence, it is possible to send data end-to-end directly between a RIOT-based sensor node and 
the MONICA cloud, with a very simple network gateway in the middle. 

5.4.5. Future work 

The main objectives for the future work with regards IoT Middleware integration of environmental sensors is 
to: 

• Investigate which pilots will require MONICA deployed environmental sensors 

• What should be monitored, i.e. wind speed, wind direction et c. 

• For existing environmental sensors at pilot sites need to be investigated if they can be integrated. 

• Involves interfacing the SCRAL and creating the necessary meta data.  
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5.5. Blimps 

5.5.1. Technology overview 

Why does MONICA need aerial vision? The higher point of view has been a predominant factor in most of the 
human activities, from archaeology to warfare; things and behaviours that apparently did not have a precise 
meaning on the ground were suddenly clear to the observer when he could climb uphill or enter into a flying 
machine. That is why one of the first activities performed with airplanes or Montgolfier was aerial photography. 

 

Figure 41:  First surviving aerial photograph, titled 'Boston, as the Eagle and the Wild Goose See It.'7 

 
Nowadays, aerial video and photography is implemented in numerous fields such as movie industries, com-
mercials, power plants, crops and pipelines monitoring just to name a few. It should not surprise then, that 
within the MONICA project an aeronautic component was foreseen to engage the different fields related to the 
project aim. An airship floating over events could simultaneously record audio, provide a global vision of the 
area and be used as a beacon for other devices.  

As the number of Unmanned Aerial Vehicles (UAV) augmented in the last years (available both for recreational 
and working purposes), the European Aviation Safety Agency (EASA) was requested in 2015 to come up with 
a Prototype Regulation that should help preparing the formal rule-making process leading toward a unified 
regulation throughout Europe. This Prototype Regulation still needs to be continued and revisited by stake-
holders and other entities, therefore EASA and the European Community currently demand to local aviation 
authorities to write and issue national regulations. 

What was just mentioned is clearly stated in the Remotely Piloted Aerial Vehicles Regulation, Issue No. 2 
dated 16 July 2015, revision 2 Dated 22 December 2016. This extract has been emanated by ENAC which is 
the Italian Civil Aviation Authority. In fact, one could read at Article 2, comma 2, the following: 

“Pursuant to the Regulation of the European Parliament and of the Council (EC) No 216/2008, RPAS of oper-
ating take-off mass not exceeding 150 kg and those designed or modified for research, experimental or scien-
tific purposes pertain to ENAC competence.”  

DigiSky operates in the Italian territory and therefore will try to develop an aircraft which best fits the Italian 
regulations. To not overload this section with unnecessary regulation details, let's sum up the requirements 
that led DigiSky to choose in favour of a blimp type solution: 

ENAC considers RPAS (Remotely Piloted Aircraft System) as a system consisting of an aerial vehicle (re-
motely piloted aircraft) without persons on board, not used for recreation and sports, and the related compo-
nents necessary for the command and control (remote ground pilot station) by a remote pilot. In other words, 
an RPA is an aircraft system that have on board equipment which enables its autonomous flight. This equip-
ment is normally constituted by a GPS, an inertial platform and a propulsion system (propellers or engines).  

                                                
7 Authors James Wallace Black and Samuel Archer King on October 13, 1860, it depicts Boston from a height of 630m 
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In any case, to overfly (with RPAS) gatherings of people during parades, sports events or different forms of 
entertainment or anyhow areas where there is an unusual concentration of people, is prohibited. (Article 10, 
comma 7).  

Unfortunately, all the MONICA events take place in critical areas, that means areas with gatherings of people.  

The following RPAS are not subject to the provisions of the above mentioned regulation (Article 2, comma 3): 

- Balloons used for scientific observations or tethered balloons 
- RPAS operating inside indoor space 

This last article explains why DigiSky decided to use tethered blimps for MONICA events. Since tethered blimp 
are allowed over critical areas they represent a valid solution for an aerial point of view. At least over Italian 
territories. 

Italian Regulation over Tethered Balloons 

As the reader should have understood from the previous chapter, tethered balloons or blimps are not subject 
to RPAS regulation, therefore it is much easier to fly them over critical scenarios. However it does not mean 
that the aeronautic authority permission to let them fly is not needed. Hereafter some extracts of the air traffic 
management memo (ATM - 05A, 23/07/2013) are commented. This memo regards events and special activity 
affecting air traffic management over Italian territories and defines procedures to require and emit a NOTAM 
(Notice to Air Man).  

As an example, fireworks, night lasers and Chinese lanterns release are activities that do require the permis-
sion of aviation authority. 

 

 
 

Figure 42: Chinese lanterns and fireworks are two examples of activity that do need aviation authority permis-
sion 

 
Those activity cited at Art.3, comma 2g (raising of tethered balloon and blimps) can take place only if they do 
not enter the “airport respect surfaces” and they do not interfere with instrumental procedures for landing, abort 
landing, take off and circling. […] If the raising height of the airship is smaller than 40 meters from the sur-
rounding ground than the NOTAM is not necessary. 

From this article it is easy to derive why DigiSky fixes the maximum height from the ground to 40 meter. In this 
way in the Italian territory the regulation is respected involving less bureaucratic effort, also considering that 
obtaining a NOTAM may be a complex and long procedure. 

Technical Parameters 

DigiSky does not produce blimps and balloons on its own, therefore the first blimp DigiSky acquired was the 
result of a scouting between European producers. Moreover, the reader should keep in mind that the simple 
balloon design has been discarded by DigiSky due to the following considerations: 

(1) Is not stable in windy conditions 
(2) Does not allow a radio control (RC) configuration, therefore the payload should have a different design 

between RC and tethered version, lowering the reusability of the payload frame. 
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Figure 43: The DigiSky blimp prototype floating over the Aeritalia Airport, Turin (Ground Operators not visible in 
the picture are controlling the Blimp altitude through cables connected to Ground)  

The prototype blimp has the following characteristics: 

Table 4: Some of the blimp prototype technical parameters 

Field Condition Value Measurement unit 

Length inflated 5 meter 

Width (max circumference) inflated 1.8 meter 

Weight Deflated 4.5 kilograms 

Volume Inflated 9 Cubic Meters 

Theoretical Payload Sea Level 4.5 Kilograms 

Real Overall Payload for partners Turin Pilot  1 Kilogram  

 

5.5.2. Infrastructure for blimps 

The blimp itself requires a set of handling and deployment systems that will be described hereafter: 

Inflating System – The blimp needs to be inflated with Helium FlyGas8. The average price in Italy for the gas 
is around 25 Euro/cubic meter before taxes, that is why a smaller airship may be preferred. On the market 
different kinds of Helium tanks are available, the following refers to an inside pressure of 200 bar: 

● 27 liters (6 cubic meter) 

● 40 liters (8 cubic meter) 

● 50 liters (10 cubic meter) 

                                                
8 The term FlyGas refers to Helium with a lower purity degree used in aerial application, while the super pure one is necessary in other applications, such as diving or in hospital procedures.  
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Therefore our prototype blimp could be inflated with a 50 liter tank. This in turn means that in a venue area, 
this tank (or more) must be allowed and carried around with an appropriate cart. 

Deployment - Recover Area – This prototype blimp must be inflated/deflated in a clear area, protected from 
the ground dust and particles using a 4x6 meters cloth, to prevent an any accidental damage to the envelope.  

Deflating System – The blimp requires a long time to deflate once the escape gas valve are opened, that is 
why a deflating system (vacuum) has to be connected to the valve to speed up the process. The vacuum 
should at least aspire draw out 1 cubic meter of gas in a minute. In order to power the vacuum, an appropriate 
power outlet must be reachable from the deflating-recover area. 

Parking slot – When not used (for overnight events for example) the blimp, if helium inflated, has to be kept 
in a closed, indoor area, in order to prevent damage to its envelope or its ground connection from atmospheric 
agents or unintentional/intentional human damages. 

Deployment System – Once inflated, ground operators should board the payload in the payload bay and 
proceed with the mission designed for the event. Each operator has to be connected to the blimp with a rope 
that cannot exceed the 38 meters of length and has to be instructed by DigiSky about the airship capabilities 
and handling manoeuvres. 

5.5.3. Services enabled by blimps 

The blimp has a payload area that enables the boarding of partner’s sensors. Therefore, if cameras or micro-
phones that meet the payload dimension, weight and power requirements are furnished, DigiSky will build a 
physical interface to board them on the payload area. Any connection to the MONICA cloud of these sensors 
has to be done at a device level and will not be provided by the blimp itself.   

DigiSky will soon test the Image Stability achievable with a GoPro Hero 3 Mounted on a Gimbal. The data 
recorded by the camera will not be instantly broadcasted to ground, but instead will be recorded on a SD card 
and analysed once the mission will be concluded. This simple service, if demonstrated to be accurate enough, 
could help the event organizer to have images or video recorded from a 38 meters elevation to use for events 
promotion or other purposes (keep in mind that over large gatherings of people, even professional multi-cop-
ters with cameras would not be allowed). 

5.5.4. Integration of blimps into the IoT middleware 

The blimp will feature a Fly Data Log that has a WiFi port which could be used to connect to the IoT Middleware 
in order to provide information about the blimp location, altitude and other parameters.  

5.5.5. Future work 

DigiSky is leading the setup of the airship in two ways: 

• The first one concerns the above mentioned tethered balloons which still requires an intensive test 
phase in order to comprehend the stability of the system with relation to the altitude, the wind condition 
and the payload boarded. 

• The second one (which will be considered in a more advanced phase of the project) relies on the 
development of a RPAS balloon or multi-copter system that will be tested in the Arena that DigiSky 
promoted for the project. Since Aeronautical regulation over RPAS may be revisited by European Au-
thorities and RPAS may be allowed in the future over critical areas, it could be useful to have an already 
tested version of these airships. 

The main objectives for the future work with regards IoT middleware integration of the blimp is to: 

• Investigate what data we can retrieve from the WiFi port. 

• Investigate how the hosted devices will connect with MONICA. 

• Enable the selected devices in the MONICA IoT middleware 
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6. Conclusion 

In this report both the IoT wearables as well as the IoT enabled devices as they will be used in MONICA  have 
been extensively discussed. The technical capabilities, infrastructure requirements and MONICA 
interoperability have been treated in detail. Besides operation and technical features, the usage of these 
devices in the context of the MONICA use cases has been discussed as well. A first, small scale, pilot of the 
so called staff wearable at the Kappa FuturFestival has been presented. A follow up of this deliverable will 
report on more experience with all these IoT devices at events taking place in 2018. 
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