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Abstract: Feature extraction analysis has been widely investigated during the last decades in computer vision commu-
nity due to the large range of possible applications. Significant work has been done in order to improve the
performance of the emotion detection methods. Classification algorithms have been refined, novel preprocess-
ing techniques have been applied and novel representations from images and videos have been introduced.
In this paper, we propose a preprocessing method and a novel facial landmarks’ representation aiming to im-
prove the facial emotion detection accuracy. We apply our novel methodology on the extended Cohn-Kanade
(CK+) dataset and other datasets for affect classification based on Action Units (AU). The performance evalu-
ation demonstrates an improvement on facial emotion classification (accuracy and F1 score) that indicates the
superiority of the proposed methodology.

1 INTRODUCTION

Face analysis and particularly the study of human
affective behaviour has been part of many disciplines
for several years such as computer science, neuro-
science or psychology (Zeng et al., 2009). The ac-
curate automated detection of human affect can bene-
fit areas such as Human Computer Interaction (HCI),
mother-infant interaction, market research, psychi-
atric disorders or dementia detection and monitor-
ing. Automatic emotion recognition approaches are
focused on the variety of human interaction capabil-
ities and biological data. For example, the study of
speech and other acoustic cues in (Weninger et al.,
2015; Chowdhuri and Bojewar, 2016), body move-
ments in (den Stock et al., 2015), electroencephalo-
gram (EEG) in (Lokannavar et al., 2015a), facial ex-
pressions (Valstar et al., 2017; Song et al., 2015; Bal-
trusaitis et al., 2016) or combinations of previous ones
such as speech and facial expressions in (Nicolaou
et al., 2011) or EEG and facial expressions in (So-
leymani et al., 2016).

One of the most popular facial emotion model
is the Facial Action Coding System (FACS) (Ek-
man and Friesen, 1978). It describes facial human
emotions such as happiness, sadness, surprise, fear,
anger or disgust; where each of these emotions is

represented as a combination of Action Units (AUs).
Other approaches abandon the path of specific emo-
tions recognition and focus on emotions’ dimensions,
measuring their valence, arousal and intensity (Nico-
laou et al., 2011; Nicolle et al., 2012; Zhao and
Pietikinen, 2009), or pleasantness-unpleasantness,
attention-rejection and sleep-tension dimensions in
the three dimension Schlosberg Model (Izard, 2013).
When it comes to the computational affect anal-
ysis, the methods for facial emotion recognition
can be classified according to the approaches used
during the recognition stages: registration, fea-
tures selection, dimensionality reduction or classifi-
cation/recognition (Alpher, 2015; Bettadapura, 2012;
Sariyanidi et al., 2013; Chu et al., 2017; Gudi et al.,
2015; Yan, 2017).

Most of the state of the art approaches for facial
emotion recognition use posed datasets for training
and testing such as CK (Kanade et al., 2000) and
MMI (Pantic et al., 2005). These datasets provide
data on non-naturalistic conditions regarding illumi-
nation or nature of expression. In order to have more
realistic data, non-posed datasets were created such
as SEMAINE (McKeown et al., 2012), MAHNOB-
HCI (Soleymani et al., 2012), SEMdb (Montenegro
et al., 2016; Montenegro and Argyriou, 2017), DE-
CAF (Abadia et al., 2015), CASME II (Yan et al.,
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2014), or CK+ (Lucey et al., 2010). On the other
hand, some applications do require a controlled envi-
ronment, therefore, posed datasets can be more suit-
able to certain applications.

A crease pattern is the underline blueprint for an
origami figure. The universal molecule is a crease
pattern constructed by the reduction of polygons un-
til they are reduced to a point or a line. Lang (Lang,
1996) presented a computational method to produce
crease patterns with a simple uncut square of pa-
per that describes all the folds necessary to create an
origami figure. Lang’s algorithm proved that it is pos-
sible to create a crease pattern from a shadow tree pro-
jection of a 3D model. This shadow tree projection is
like a dot and stick molecular model where the joints
and extremes of a 3D model are represented as dots
and the connections as lines.

The use of Eulerian magnification (Wu et al.,
2012; Wadhwa et al., 2016) has been proved to in-
crease the classification results for facial emotion
analysis. The work presented in (Park et al., 2015)
uses Eulerian magnification on a spatio-temporal ap-
proach that recognises five emotions using a SVM
classifier reaching a 70% recognition rate on CASME
II dataset. The authors in (Ngo et al., 2016) obtained
an improvement of 0.12 in the F1 score using a simi-
lar approach.

Amongst the most common classifiers for facial
emotion analysis, SVM, boosting techniques and ar-
tificial neural networks (e.g. DNNs) are the most
used (Lokannavar et al., 2015b; Yi et al., 2013; Val-
star et al., 2017). The input to these classifiers are
a series of features extracted from the available data
that will provide distinctive information of the emo-
tions such as facial landmarks, histogram of gradi-
ents (HOG) or SIFT descriptors (Corneanu et al.,
2016). The purpose of this work is to introduce novel
representations and preprocessing methods for face
analysis and specifically facial emotion classification
and to demonstrate the improvement of the classifica-
tion results. The proposed preprocessing methodol-
ogy uses Eulerian magnification in order to enhance
facial movements as presented in (Wadhwa et al.,
2016), which provides a more pronounced represen-
tation of facial expressions. The proposed represen-
tation is based on Lang’s Universal Molecule Algo-
rithm (Bowers and Streinu, 2015) resulting in a crease
pattern of the facial landmarks. In summary, the main
contributions are: a) We suggested a motion magni-
fication approach as a preprocessing stage aiming to
enhance facial micro-movements improving the over-
all emotion classification accuracy and performance.
b) We developed a new Origami based methodology
to generate novel descriptors and representations of

Figure 1: The diagram of the proposed methodology visual-
ising the steps from input and preprocessing, to face repre-
sentation and classification for all the suggested variations
considering the classic feature based machine learning so-
lutions.

facial landmarks. c) We performed rigorous analysis
and demonstrated that the addition of the proposed
descriptors improve the classification results of state-
of-the-art methods based on Action Units for face
analysis and basic emotion recognition.

The remainder of this paper is organized as fol-
lows: Section 2 presents the proposed methodology
and in section 3 details on the evaluation process and
the obtained results are provided. Section 4 gives
some conclusion remarks.

2 PROPOSED METHODOLOGY

Our proposed methodology comprises a data pre-
processing, a face representation and a classifica-
tion phase. These phases are applied both for fea-
ture based learning methods and deep architectures.
Regarding the feature based methods (see figure 1),
in the preprocessing phase, facial landmarks are ex-
tracted with or without Eulerian Video Magnification
and an affine transform is applied for landmark and
face alignment. In order to obtain subpixel alignment
accuracy the locations are refined using frequency do-
main registration methods, (Argyriou and Vlachos,
2003; Argyriou and Vlachos, 2005; Argyriou, 2011).
In the face representation phase and the feature based
learning approaches, a pyramid Histogram of Gradi-
ents (pHOG) descriptor is utilised. After the affine
transformation new facial landmarks are extracted
and they are used as input both to the Lang’s Univer-
sal Molecule algorithm to extract the novel origami
descriptors and to the facial displacement descriptor
(i.e., the Euclidean distance between the nose location
in a neutral and a ‘peak’ frame representative of the
expression). Finally, in the classification phase, the
pHOG features are used as input to a Bayesian Com-
pressed Sensing (BCS) and a Bayesian Group-Sparse
Compressed Sensing (BGCS) classifiers, while the
origami and nose-distance displacement descriptors
are provided as inputs to a Quadratic Support Vector
Machine (SVM) classifier. The t-Distributed Stochas-
tic Neighbor Embedding (tSNE) dimensionality re-



duction technique is applied to the origami descriptor
before the SVM classifier.

Regarding, the deep neural networks and consid-
ering an architecture based on the work on Atten-
tional Recurrent Relational Network-LSTM (ARRN-
LSTM) or the Spatial-Temporal Graph Convolutional
Networks (ST-GCN) (Li et al., 2018; Yan et al.,
2018), while the preprocessing stage remains the
same. The input images are processed to extract fa-
cial landmarks, and then aligned. Furthermore, the
process is applied twice and the second time for the
motion magnified images. During the face representa-
tion the proposed origami representation is applied on
the extracted landmarks and then the obtained pattern
is imported to the above networks aiming to model si-
multaneously both spatial and temporal information.
The utilised methodology is summarized in Figure 1
and the whole process is described in detail in the fol-
lowing subsections.

2.1 Preprocessing Phase

The two main techniques used in the data preprocess-
ing phase (apart from the facial landmarks extraction)
are the affine transform for landmark alignment and
the Eulerian Video Magnification (EVM). In the pre-
processing phase a set of output sequences are gener-
ated based on a combination of different techniques.

SEC-1: The first output comprises affine trans-
formation of the original sequence of images which
are then rescaled to 120×120 pixels and converted to
gray-scale. This represents the input of the pHOG de-
scriptor.

SEC-2: The second output comprises Eulerian
magnified images which are then affine transformed,
rescaled to 120×120 pixels and converted to gray
scale. This represents again the input of the pHOG
descriptor.

SEC-3: In the third output, the approaches pro-
posed in (Kumar and Chellappa, 2018; Baltrusaitis
et al., 2016; Argyriou and Petrou, 2009) are used be-
fore and after the affine transformation to reconstruct
the face and obtain the 3D facial landmarks. This is
provided as input to the facial displacement and the
proposed origami descriptor.

SEC-4: In the fourth output, the facial landmarks
are obtained from the Eulerian motion magnified im-
ages, the affine transform is applied and the facial
landmarks are estimated again. This is given as in-
put to the facial feature displacement descriptor.

The same process is considered for the deep
ARRN-LSTM architecture with input the obtained
3D facial landmarks extracted by the proposed
origami transformation.

2.2 Feature Extraction Phase

Three schemes have been used in this phase for the
classic feature based learning approaches, (1) the
pyramid Histogram of Gradients (pHOG), (2) a facial
feature displacement descriptor, and (3) the proposed
origami descriptor. These schemes are analysed be-
low.

pHOG features extraction: The magnified affine
transformed sequence (i.e., SEC-2) is provided as in-
put to the pHOG descriptor. More specifically, eight
bins on three pyramid levels of the pHOG are applied
in order to obtain a row of hm features per sequence.
For comparison purposes, the same process is applied
to the unmagnified sequence (i.e., SEC-1) and a row
of h features per sequence is obtained respectively.

Facial feature displacement: The magnified fa-
cial landmarks (i.e., fourth sequence output of the pre-
processing phase) are normalised according to a fidu-
cial face point (i.e., nose) to account for head motion
in the video stream. In other words, the nose is used
as a reference point, such that the position of all the
facial landmarks are independent of the location of
the subject’s head in the images. If Li = [Lix Liy ]
are the original image coordinates of the i-th land-
mark, and Ln = [Lnx Lny ] the nose landmark co-
ordinates, the normalized coordinates are given by
li = [Lix −Lnx Liy −Lny ].

The facial displacement features are the distances
between each facial landmark in neutral pose and the
corresponding ones in the ‘peak’ frame that represents
the corresponding expression. The displacement of
the i-th landmark (i.e., i-the vector element) is calcu-
lated using the Euclidean distance

d(l(p)
i , l(n)i ) =

√
(l(p)

ix − l(n)ix )2− (l(p)
iy − l(n)iy )2 (1)

between its normalised position in neutral frame (l(n)i )
and the ‘peak’ frame (l(p)

i ). In the remaining of this
paper, we will be referring to these features as dis-
tance to nose (neutral vs peak) features (DTNnp). The
output of the DTNnp descriptor is a dm long row vec-
tor per sequence. For comparison purposes, the same
process is applied to unmagnified facial landmark se-
quences (i.e., the third sequence of the preprocessing
phase) and a row of d features per sequence is ob-
tained accordingly.

2.2.1 Origami based 3D face Representation

The origami representation is created from the nor-
malised facial 3D landmarks (i.e., SEC-3). The de-
scriptor is using o facial landmarks in order to cre-
ate an undirected graph of n nodes and e edges repre-
senting the facial crease pattern. The n nodes contain



Figure 2: Shadow tree. The facial landmarks are linked
creating a symmetric tree.

the information of the x and y landmark coordinates,
while the e edges contain the IDs of the two nodes
connected by the corresponding edge (which repre-
sent the nodes/landmarks relationships). The facial
crease pattern creation process is divided into three
main steps: shadow tree, Lang’s polygon and shrink-
ing.

The first step implies the extraction of the flap pro-
jection of the face (shadow tree), from the facial land-
marks. This shadow tree or metric tree (T,d) is com-
posed of leaves (external nodes) Nex = n1, ...,np, in-
ternal nodes Nin = b1, ...,bq, edges E and distances
d to the edges. This distance is the Euclidean dis-
tance between connected landmarks (nodes) through
an edge in the tree. It is just a distance measured be-
tween each landmark that is going to be used during
the Lang’s Polygon creation and during the shrinking
step. The shadow tree is created as a linked version of
2D facial landmarks of the eyebrows, eyes, nose and
mouth (see Figure 2).

During the second step a convex doubling cycle
polygon (Lang’s polygon) Lp, is created from the
shadow tree (T,d), based on the double cycling poly-
gon f creation algorithm. According to this process
we are walking from one leaf node to the next one in
the tree until reaching the initial node. Therefore, the
path to go from n1 to n2 includes the path from n1
to b1 and from b1 to n2; the path from n2 to n3 also
requires to pass through b1; and the path from n5 to
n6 goes through b1, b2 and b3. In order to guaranty
the resultant polygon to be convex, we shaped it as a
rectangle (see Figure 3), where the top side contains
the landmarks of the eyebrows, the sides are formed
by the eyes and nose, and the mouth landmarks are at
the bottom. This Lang’s polygon represents the area
of the face that is going to be folded.

The obtained convex polygonal region has to sat-
isfy the following condition: the distance between the
leaf nodes ni and n j in the polygon (dP) should be
equal or greater than the distance of those leaf nodes
in the shadow tree (dT ). This requirement is mainly
due to the origami properties, so since a shadow tree

Figure 3: Based on Lang’s polygon rules, a rectangle-
shaped initial convex doubling cycle polygon was created
from the shadow tree in order to start with the same ini-
tial polygon shape for any face. The dashed arrows point
the correspondent internal nodes bi and the straight arrows
point the leave nodes ni.

come from a folded piece of paper (face), once it is
unfolded to see the crease pattern, the distances on
the unfolded paper dP(ni,n j) are going to be always
larger or equal to the distances in the shadow tree
dT (ni,n j).

dP(ni,n j)≥ dT (ni,n j) (2)
The third step corresponds to the shrinking pro-

cess of this polygon. All the edges are moving simul-
taneously towards the centre of the polygon at con-
stant speed until one of the following two events oc-
cur: contraction or splitting. The contraction event
happens when the points collide in the same position
(see Eq. 3). In this case, only one point is kept and the
shrinking process continues (see Figure 4).

dP(ni,n j)≤ th, then ni = n j (3)

where j = i+1 and th is a positive number ≈ 0.
The splitting event occurs when the distance be-

tween two non-consecutive points is equal to their
shadow tree distance (see Figure 5).

dP(ni,nk)≤ dT (ni,nk)+ th (4)

where k ≥ i+ 1 and th is a positive number ≈ 0. As
a consequence of this event a new edge is generated
between these points creating two new sub-polygons.
The shrinking process continues on each polygon sep-
arately.

Finally, the process will end when all the points
converge, creating a crease pattern, C = g( f (T,d)),
where (T,d) is the shadow tree, f (T,d) is the Lang
polygon, C is the crease pattern and g and f are
the processes to create the double cycle polygon and
shrinking functions, respectively. Due to the structure
of our initial Lang’s polygon, the final crease patterns
will have a structure similar to the one shown in Fig-
ure 6.

The crease pattern is stored as an undirected graph
containing the coordinates of each node and the re-
quired information for the edges (i.e. IDs of linked



Figure 4: Contraction event. In this case the distance be-
tween nodes 24 and 25 is 0 so one of the nodes is elimi-
nated. Therefore the number of leaf nodes is reduced to 36.
Nodes 13 and 14 are close but not close enough to trigger a
contraction event.

Figure 5: Splitting event. When the distance between two
non-consecutive points in Lang’s polygon (nodes 23 and 26)
is the same as the distance of those two points in the shadow
tree, a new edge is created. The intermediate nodes in the
tree are also located in the new edge (nodes b4, b5, b9, b10).

nodes). Due to the fact that x and y coordinates
and the linked nodes are treated as vectorial features,
these can be represented more precisely by a complex
or hyper-complex representation, as shown in (Adali
et al., 2011). A vector can be decomposed into lin-
early independent components, in the sense that they
can be combined linearly to reconstruct the original
vector. However, depending on the phenomenon that
changes the vector, correlation between the compo-
nents may exist from a statistical point of view (i.e.
two uncorrelated variables are linearly independent
but two linearly independent variables are not always
uncorrelated). If they are independent our proposed
descriptor does not provide any significant advantage,
but if there is correlation this is considered. In most
of the cases during the feature extraction process com-
plex or hyper-complex features are generated but de-
composed to be computed by a classifier (Adali et al.,

Figure 6: This image shows the crease pattern from the pro-
posed algorithm applied to our rectangular convex doubling
cycle polygon produced from the facial landmarks.

2011; Li et al., 2011). In our case, the coordinates
of the nodes are correlated and also the node IDs that
represent the edges. Therefore, the nodes and edges
are represented as show in 5 and 6.

n = nix + iniy (5)

e = ei nodeID1 + iei nodeID2 (6)
where nix and niy is the coordinate x and y of the ith
leave node; and ei nodeID1 and ei nodeID2 are the
identifiers of the nodes linked by the ith edge.

2.3 Classification Phase

2.3.1 Feature based classification approaches

Two state-of-the-art methods have been used in the
third and last phase of the proposed emotion clas-
sification approach. The first method is based on a
Bayesian Compressed Sensing (BCS) classifier, in-
cluding its improved version for Action Units detec-
tion, and a Bayesian Group-Sparse Compressed Sens-
ing (BGCS) classifier, similar to the one presented
in (Song et al., 2015). The second method is simi-
lar to (Michel and Kaliouby, 2003) and is based on a
quadratic SVM classifier which has been successfully
applied for emotion classification in (Buciu and Pitas,
2003).

3 RESULTS

Data from two different datasets (CK+ and
SEMdb) is used to validate the classification perfor-
mance of the methods by calculating the classification
accuracy and the F1 score. The CK+ dataset contains
593 sequences of images from 123 subjects. Each se-
quence starts with a neutral face and ends with the
peak stage of an emotion. The CK+ contains AU
labels for all of them but basic emotion labels only
for 327. The SEMdb contains 810 recordings from
9 subjects. The start of each recording is considered
as a neutral face and the peak frame is the one whose
landmarks vary most from the respective landmarks in
the neutral face. SEMdb contains labels for 4 classes
related to autobiographical memories. These autobi-
ographical memory classes are represented by spon-
taneous facial micro-expressions triggered by the ob-
servation of 4 different stimulations related to distant
and recent autobiographical memories.

The next paragraphs explain the obtained results
ordered by the objective classes (AUs, 7 basic emo-
tions or 4 autobiographical emotions). The experi-
ments are compared with results obtained using two
state of the art methods: Bayesian Group-Sparse
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Figure 7: F1 score results of the 24 AUs classification using
the state of the art methods BCS and BGCS and the new
results when the novel features are added.

Compressed Sensing (Song et al., 2015) and land-
marks to nose (Michel and Kaliouby, 2003). Song et
al. method compares two classification algorithms,
i.e., the Bayesian Compressed Sensing (BCS) and
their proposed improvement Bayesian Group-Sparse
Compressed Sensing (BGCS). Both classifiers are
used to detect 24 Action Units within the CK+ dataset
using pHOG features. Landmarks to nose methods
consist on using the landmarks distance to nose dif-
ference between the peak and neutral frame as in-
put of an SVM classifier to classify 7 basic emotions
in (Michel and Kaliouby, 2003) or 4 autobiograph-
ical emotions in (Montenegro et al., 2016). Regard-
ing the DNN architectures the comparative study is
performed with the original method proposed by Yan
in (Yan et al., 2018) considering both the origami
graph in a Graph Convolutional network with and
without Eulerian Video Magnification.

The 24 AUs detection experiment involved the
BCS and the BGCS classifiers and CK+ database.
The input features utilised included the state of the
art ones and them combined with our proposed ones.
Therefore, for the AUs experiment the pHOG were
tested independently and combined with the proposed
magnified pHOG and origami features; and identi-
cally with the distance to nose features. The result
of the different combinations are shown in Figure 7,
Table 1 and Table 2. They show that the contribution
of the new descriptors improves the F1 score and the
overall accuracy.

The second experiment’s objective was the classi-
fication of 7 basic emotions using a quadratic SVM
classifier, the distance to nose features combined with
the proposed ones and the CK+ database. The results
shown in Table 3 the quadratic SVM ones. The com-
bination of the features did not provide any noticeable
boost in the accuracy. The increment in the F1 score
is not big enough to be taken into account. Similar re-
sults were obtained for the VGG-S architecture with
an increment in accuracy and the F1 score.

Table 4 shows the confusion matrix of the emo-

Table 1: Mean of k-fold F1 score and Accuracy values. 24
AU from CK+ dataset are classified using 4 combinations
of features and BCS and BGCS classifier

Method Meas.

Features
pHOG pHOG pHOG pHOG

Ori Mag pHOG Mag pHOG
red Ori

BCS F1 0.636 0.658 0.673 0.667
ACC 0.901 0.909 0.909 0.912

BGCS F1 0.664 0.654 0.687 0.679
ACC 0.906 0.908 0.913 0.91

Table 2: Mean of k-fold F1 score and Accuracy values.
24 Action Units from CK+ dataset are classified. A com-
bination of the DTNnp (Montenegro et al., 2016), the
pHOG (Song et al., 2015) extracted from the magnified ver-
sion of the data and the novel origami features are used as
input to the BCS/BGCS classifiers.

Method Meas.

Features
DTNnp DTNnp DTNnp

Mag pHOG Mag pHOG
Ori

BCS F1 0.407 0.671 0.663
ACC 0.873 0.913 0.914

BGCS F1 0.555 0.69 0.682
ACC 0.893 0.915 0.914

Table 3: Mean of k-fold F1 score and Accuracy values.
7 emotion classes from CK+ dataset are classified. A
combination of the DTNnp (Montenegro et al., 2016), the
pHOG (Song et al., 2015) extracted from the magnified ver-
sion of the data and the novel origami features are used
as input to the quadratic SVM classifier. The final rows
demonstrate the results obtained using the VVG-S architec-
tures.

Method Meas.

Features
DTNnp DTNnp DTNnp

Mag pHOG Mag pHOG
Ori

qSVM F1 0.861 0.857 0.865
ACC 0.899 0.893 0.899

Method Meas. Orig Origami Origami + Mag

VGG-S F1 0.269 0.282 0.284
ACC 0.24 0.253 0.26

tions classified for the best F1 score experiments.
This confusion matrix shows that fear is the emotion
with less rate of success and surprise and happiness
to be the more accurately recognised. The third ex-
periment involved the BCS and quadratic SVM clas-
sifiers, using the SEMdb dataset, pHOG features and
a combination of pHOG and distance to nose features
(both combined with the proposed ones) and detecting
the corresponding 4 classes that are related to autobio-
graphical memories. Both classifiers (BCS and SVM)



Table 4: The obtained confusion matrix for the 7 emotions
present in the CK+ dataset.

anger cont disg fear happy sadn surpr
anger 38 2 3 0 0 2 0
contempt 1 15 0 0 1 1 0
disgust 5 0 54 0 0 0 0
fear 0 0 0 19 4 0 2
happy 0 2 0 1 66 0 0
sadness 3 0 1 1 1 22 0
surprise 0 2 0 0 1 0 80

provide improved classification estimates when the
combination of all features is used to detect the 4 au-
tobiographical memory classes.

4 CONCLUSION

We presented the improvement that novel prepro-
cessing techniques and novel representations can pro-
vide in the classification of emotions from facial im-
ages or videos. Our study proposes the use of Eu-
lerian magnification in the preprocessing stage and
an origami algorithm in the feature extraction stage.
Our results show that the addition of these techniques
can help to increase the overall classification accuracy
both for Graph Convolutional Network and feature
based methods.
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