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Abstract. In this work we propose a novel method for supervised,
keyshots based video summarization by applying a conceptually sim-
ple and computationally efficient soft, self-attention mechanism. Current
state of the art methods leverage bi-directional recurrent networks such
as BiLSTM combined with attention. These networks are complex to
implement and computationally demanding compared to fully connected
networks. To that end we propose a simple, self-attention based network
for video summarization which performs the entire sequence to sequence
transformation in a single feed forward pass and single backward pass
during training. Our method sets a new state of the art results on two
benchmarks TvSum and SumMe, commonly used in this domain.
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1 Introduction

Personal videos, video lectures, video diaries, video messages on social networks
and videos in many other domains are becoming to dominate other forms of
information exchange. According to Cisco Visual Networking Index: Forecast
and Methodology, 2016-20213, by 2019 video will account for 80% of all global
Internet traffic, excluding P2P channels. Consequently, better methods for video
management, such as video summarization, are needed.

Video summarization is a task where a video sequence is reduced to a small
number of still images called keyframes, sometimes called storyboard or thumb-
nails extraction, or a shorter video sequence composed of keyshots, also called
video skim or dynamic summaries. The keyframes or keyshots need to convey
most of key information contained in the original video. This task is similar to a
lossy video compression, where the building block is a video frame. In this paper
we focus solely on the keyshots based video summarization.

? This research was funded by the H2020 MONICA European project 732350 and
by the NATO within the WITNESS project under grant agreement number G5437
and within the MIDAS G5381. We gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Titan Xp GPU used for this research.
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Video summarization is an inherently difficult task even for us people. In or-
der to identify the most important segments one needs to view the entire video
content and then make the selection, subject to the desired summary length.
Naturally, one could define the keyshots as segments that carry mutually diverse
information while also being highly representative of the video source. There
are methods that formulate the summarization task as a clustering with cost
functions based on exactly these criteria. Unfortunately, to define how well cho-
sen keyshots represent the video source as well as the diversity between them
is extremely difficult since this needs to reflect the information level perceived
by the user. Common techniques analyze motion features, measure the distance
between color histograms, image entropy or in the 2/3D CNN feature space
[25,18,1,2], reflecting semantic similarities. However, none of these approaches
can truly capture the information in the video context. We believe that to au-
tomatically generate high quality summaries, similar to what we are capable of,
a machine should learn from us humans by means of a behavioral cloning or
supervision.

Early video summarization methods were based on unsupervised methods,
leveraging low level spatio-temporal features and dimensionality reduction with
clustering techniques. Success of these methods solely stands on the ability to
define distance/cost functions between the keyshots/frames with respect to the
original video. As discussed above, this is very difficult to achieve as well as it
introduces a strong bias in the summarization given by the type of used features
such as semantic and pixel intensities. In contrast, models trained with supervi-
sion learn the transformation that produces summaries similar to those manually
produced. Currently, there are two datasets with such annotations, TvSum [32]
and SumMe [12], where each video is annotated by 15-20 users. The annotations
vary between users with consistency expressed by a pairwise F-score ∼ 0.34. This
fact reveals that the video annotation is a rather subjective task. We argue that
under these circumstances it may be extremely difficult to craft a metric that
would accurately express how to cluster video frames into keyshots, similar to
human annotation. On this premise, we decided to adopt the supervised video
summarization for our work.

Current state of the art methods for video summarization are based on re-
current encoder-decoder architectures, usually with bi-directional LSTM [14]
or GRU [6] and soft attention [4]. While these models are remarkably power-
ful in many domains, such as machine translation and image/video captioning,
they are computationally demanding, especially in the bi-directional configu-
ration. Recently A. Vaswani et al. [34] demonstrated that it is possible to per-
form sequence to sequence transformation only with the attention. Along similar
lines, we propose a pure attention, sequence to sequence network VASNet for
video keyshots summarization and demonstrate its performance on TvSum and
SumMe benchmarks. Architecture of this model does not employ recurrent or
sequential processing and can be implemented with conventional matrix/vector
operations and run in a single forward/backward pass during inference/training,
even for sequences with variable length. The architecture is centered around two
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Fig. 1: For each output the self-attention network generates weights for all input
features. Average of the input features, weighted by this attention, is regressed
by a fully connected neural network to the frame importance score.

key operations, attention weights calculation and frame level score regression.
An overview of this model is shown in Fig. 1. Frame score at every step t is esti-
mated from a weighted average of all input features. The weights are calculated
with the self-attention algorithm. Given the generic architecture of our model
we believe that it could be successfully used in other domains requiring sequence
to sequence transformation. Our contributions are:

1. A novel approach to sequence to sequence transformation for video summa-
rization based on soft, self-attention mechanism. In contrast, current state
of the art relies on complex LSTM/GRU encoder-decoder methods.

2. A demonstration that a recurrent network can be successfully replaced with
simpler, attention mechanism for the video summarization.

2 Related Work

Recent advancements in deep learning were rapidly adapted by researches fo-
cusing on video summarization, particularly encoder-decoder networks with at-
tention for sequence to sequence transformation. In this section we will discuss
several existing methods related to our work.

K. Zhang et al. [40] pioneered the application of LSTM for supervised video
summarization to model the variable-range temporal dependency among video
frames to derive both representative and compact video summaries. They en-
hance the strength of the LSTM with the determinantal point process which is
a probabilistic model for diverse subset selection. Another sequence to sequence
method for supervised video summarization was introduced by Ji et al. [15].
Their deep attention-based framework uses a bi-directional LSTM to encode the
contextual information among input video frames. Mahasseni et al. [23] pro-
pose an adversarial network to summarize the video by minimizing the distance
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between the video and its summary. They predict video keyframes distribution
with a sequential generative adversarial network. A deep summarization network
in an encoder-decoder architecture via an end-to-end reinforcement learning has
been proposed by Zhou et al. [42] to achieve state of the art results in unsu-
pervised video summarization. They design a novel reward function that jointly
takes diversity and representativeness of generated summaries into account. A
hierarchical LSTM is constructed to deal with the long temporal dependencies
among video frames by [41], but it fails to capture the video structure informa-
tion, where the shots are generated by fixed length segmentation.

Some works use side semantic information associated with a video along
with visual features, like surrounding text such as titles, queries, descriptions,
comments, unpaired training data and so on. Rochan et al. in [29], proposed
deep learning video summaries from unpaired training data, which means they
learn from available videos summaries without their corresponding raw input
videos. Yuan et al. [39], proposed a deep side semantic embedding model which
uses both side semantic information and visual content in the video. Similarly
H. Wei et al. [35] propose a supervised, deep learning method trained with
manually created text descriptions as ground truth. At the heart of this method
is the LSTM encode-decoder network. Wei achieves competitive results with this
approach, however, more complex labels are required for the training. Fei et al.
[9] complemented visual features with video frame memorability, predicted by a
separate model such as [16] or [8].

Other approaches, like the one described in [31], use an unsupervised method
by clustering some features extracted from the video, delete the similar frames,
and select the rest of the frames as keyframe of the video. In fact, they used
a hierarchical clustering method to generate a weight map from the frame sim-
ilarity graph in which the clusters can easily be inferred. Another clustering
method is proposed by Otani et al. [26], in which they use deep video features
to encode various levels of content including objects, actions, and scenes. They
extract the deep features from each segment of the original video and apply a
clustering-based summarization technique on them.

2.1 Attention Techniques

The fundamental concept of attention mechanism for neural networks was laid
by Bahdanau et al. [4] for the task of machine translation. This attention is based
on an idea that the neural network can learn how important various samples in
a sequence, or image regions, are with respect to the desired output state. These
importance values are defined as attention weights and are commonly estimated
simultaneously with other model parameters trained for a specific objective.
There are two main distinct attention algorithms, hard and soft.

Hard attention produces a binary attention mask, thus making a ’hard’ de-
cision on which samples to consider. This technique was successfully used by K.
Xu et al. [37] for image caption generation. Hard attention models use stochastic
sampling during the training; consequently, backpropagation cannot be employed
due to the non-differentiable nature of the stochastic processes. REINFORCE
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learning rule [36] is regularly used to train such models. This task is similar to
learning an attention policy introduced by V. Mnih et al. [24].

In this work we exclusively focus on soft attention. In contrast to the hard
attention, soft attention generates weights as true probabilities. These weights
are calculated in a deterministic fashion using a process that is differentiable.
This means that we can use backpropagation and train the entire model end-to-
end. Along with the LSTM, soft attention is currently employed in the majority
of sequence to sequence models used in machine translation [22], image/video
caption generation [37],[38], addressing neural memory [11] and other. Soft at-
tention weights are usually calculated as a function of the input features and
the current encoder or decoder state. The attention is global if at each step t
all input features are considered or local where the attention has access to only
limited number of local neighbors.

If the attention model does not consider the decoder state, the model is called
self-attention or intra-attention. In this case the attention reflects the relation
of an input sample t with respect to other input samples given the optimization
objective. Self-attention models were successfully used in tasks such as reading
comprehension, summarization and in general for task-independent sequence
representations [5][27][20]. The self-attention is easy and fast to calculate with
matrix multiplication in a single pass for entire sequence since at each step we
do not need the result of past state.

3 Model Architecture

Common approach to supervised video summarization and other sequence to
sequence transformations, is an application of a LSTM or GRU encoder-decoder
network with attention. Forward LSTM is usually replaced with bi-directional
BiLSTM since keyshots in the summary have relation to future video frames in
the sequence. Unlike the RNN based networks, our method does not need to
reach for special techniques, such as BiLSTM, to achieve non-causal behavior.
The vanilla attention model has equal access to all past and future inputs. This
aperture can be, however, easily modified and it can even be asymmetric, dilated,
or exclude the current time step t.

The hidden state passed from encoder to decoder has always fixed length,
however, it needs to encode information representing sequences with variable
lengths. This means that there is a higher information loss for longer sequences.
The proposed attention mechanism does not suffer from such loss since it accesses
the input sequence directly without an intermediate embedding.

Architecture proposed in this work replaces entirely the LSTM encoder-
decoder network with the soft, self-attention and a two layer, fully connected
network for regression of the frame importance score. Our model takes an in-
put sequence X = (x0, . . . ,xN ), x ∈ RD and produces an output sequence
Y = (y0, . . . , yN ), y = [0, 1), both of length N . The input is a sequences of
CNN feature vectors with dimensions D, extracted for each video frame. Fig. 2
shows the entire network in detail.
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Fig. 2: Diagram of VASNet network attending sample xt.

Unnormalized self-attention weight et,i is calculated as an alignment between
input feature xt and the entire input sequence according to Luong et al. [21].

et,i = s[(Uxi)
T (V xt)] t = [0, N), i = [0, N) (1)

Here, N is the number of video frames, U and V are network weight matrices
estimated together with other parameters of the network during optimization
and s is a scale parameter that reduces values of the dot product between Uxi

and V xt. We set the scale s to value 0.06, determined experimentally. Impact
of the scale on the model performance was, however, minimal. Alternatively,
the attention vector could be also realized by an additive function as shown by
Bahdanou et al. [4].

et,i = M tanh(Uxi + V xt) (2)

where M are additional network weights learned during training. Both formulas
have shown similar performance, however, the multiplicative attention is easier
to parallelise since it can be entirely implemented as a matrix multiplication
which can be highly optimized. The attention vector et is then converted to the
attention weights αt with softmax.

αt,i =
exp(et,i)∑N

k=1 exp(et,k)
(3)

The attention weights αt are true probabilities representing the importance of
input features with respect to the desired frame level score at the time t. Linear
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transformation C is then applied to each input and the results then weighted
with attention vector αt and averaged. The output is a context vector ct which
is used for the final frame score regression.

bi = Cxi (4)

ct =

N∑
i=1

αt,ibi ct ∈ RD (5)

The context vector ct is then projected by a single layer, fully connected network
with linear activation and residual sum followed by dropout and layer normal-
ization.

kt = norm(dropout(Wct + xt)) (6)

The C and W are network weight matrices learned during the network training.
To regularize the network we also add a dropout for attention weights as shown
in Fig. 2. We found it to be beneficial, especially for small training datasets such
as in the canonical setting for TvSum (40 videos) and SumMe (20 videos).

By design, the attention network discards the temporal order in the sequence.
This is due to the fact that the context vector ct is calculated as a weighted
average of input features without any order information. The order of the output
sequence is still preserved. The positional order for the frame score prediction is
not important in the video summarization task, as has been shown in the past
work utilizing clustering techniques that also discard the input frame order. For
other tasks, such as machine translation or captioning, the order is essential.
In these cases every prediction at time t, including attention weights, could
be conditioned on state at t − 1. Alternatively, a positional encoding could be
injected to the input as proposed by [34],[10].

Finally, a two layer neural network performs the frame score regression
yt = m(kt). First layer has a ReLU activation followed by dropout and layer
normalization [3], while the second layer has a single hidden unit with sigmoid
activation.

3.1 Frame Scores to Keyshot Summaries

The model outputs frame-level scores that are then converted to keyshots. Fol-
lowing [40], this is done in two steps. First, we detect scene change points where
each represents a potential keyshot segment. Second, we select a subset of these
keyshots by maximizing the total frame score within these keyshots while con-
straining the total summary length to 15% of the original video length as per [12].
The scene change points are detected by Kernel Temporal Segmentation (KTS)
method [28] as shown in Fig. 3. For each detected shot i ∈ K we calculate score
si.

si =
1

li

li∑
a=1

yi,a (7)
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Fig. 3: Temporal segmentation with KTS.

where yi,a is score of a-th frame within shot i and li is the length of i-th shot.
Keyshots are then selected with the Knapsack algorithm Eq. 8 according to [32].

max

K∑
i=1

uisi, s. t.

K∑
i=1

uili ≤ L, ui ∈ 0, 1 (8)

Keyshots with ui = 1 are then concatenated to produce the final video summary.
For evaluation we create a binary summary vector where each frame in shot
(ui = 1) is set to one.

3.2 Model Training

To train our model we use the ADAM optimizer [17] with learning rate 5 · 10−5

This low learning rate is used as a result of having a batch with single sample,
where the sample is an entire video sequence. We use 50% dropout and L2 =
10−5 regularization. Training is done over 200 epochs. Model with the highest
validation F-score is then selected.

3.3 Computation Complexity

The self-attention requires a constant number of operations at each step for all
input features N , each of size D. The complexity is thus O(N2D). The recurrent
layer, on the other hand, requires O(N) sequential operations, each of complexity
O(ND2). Self-attention needs less computation when the sequence length N is
shorter than the feature size D. For longer videos, a local attention would be
used rather then the global one.

4 Evaluation

4.1 Datasets Overview

In order to directly compare our method with the previous work we conducted all
experiments on four datasets, TvSum [32], SumMe [12], OVP [7] and YouTube
[7]. OVP and YouTube were used only to augment the training dataset. TvSum
and SumMe are currently the only datasets suitably labeled for keyshots video
summarization, albeit still small for training deep models. Table 1 provides an
overview of the main datasets properties.
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Table 1: Overview of the TvSum and SumMe properties.
Video length (sec)

Dataset Videos
User
annotations

Annotation
type

Min Max Avg

SumMe 25 15-18 keyshots 32 324 146

TvSum 50 20
frame-level
importance scores

83 647 235

OVP 50 5 keyframes 46 209 98

YouTube 39 5 keyframes 9 572 196

The TvSum dataset is annotated by frame-level importance scores, while the
SumMe with binary keyshot summaries. OVP and YouTube are annotated with
keyframes and need to be converted to the frame-level scores and binary keyshot
summaries, following the protocol discussed in the following section 4.2.

4.2 Ground Truth Preparation

Our model is trained using frame-level scores, while the evaluation is performed
with the binary keyshot summaries. The SumMe dataset comes with keyshot
annotations, as well as frame-level scores calculated as an average of the keyshot
user summaries per frame. In the case of TvSum we convert the frame-level
scores to keyshots following the protocol described in section 3.1. Keyframe
annotations in OVP and YouTube are converted to frame-level scores by tem-
porarily segmenting the video into shots with KTS and then selecting shots that
contain the keyframes. Knapsack is then used to constrain the total summary
length, however in this case the keyshot score si (Eq. 8) is calculated as a ratio
of number of keyframes within the keyshot and the keyshot length.

To make the comparison even more direct, we adopt identical training and
testing ground truth data used by [40], [42] and [23]. This represents CNN em-
beddings, scene change points, and generated frame-level scores and keyshot
labels for all datasets. The preprocessed data are publicly available (K. Zhou et
al. [42] 4 and K Zhang et al.[40] 5). CNN embeddings used in this preprocessed
dataset have 1024 dimensions and were extracted from the pool5 layer of the
GoogLeNet network [33] trained on ImageNet [30].

We use a 5-fold cross validation for both, canonical and augmented settings
as suggested by [40]. In the canonical setting, we generate 5 random train/test
splits for the TvSum and SumMe datasets individually. 80% samples are used
for training and the rest for testing. In the augmented setting we also maintain
the 5-fold cross validation with the 80/20 train/test, but add the other datasets
to the training split. For example, to train the SumMe in the augmented setting

4 http://www.eecs.qmul.ac.uk/~kz303/vsumm-reinforce/datasets.tar.gz
5 https://www.dropbox.com/s/ynl4jsa2mxohs16/data.zip?dl=0

http://www.eecs.qmul.ac.uk/~kz303/vsumm-reinforce/datasets.tar.gz
https://www.dropbox.com/s/ynl4jsa2mxohs16/data.zip?dl=0
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we take all samples from TvSum, OVP and YouTube and 80% of the SumMe as
the training dataset and the remaining 20% for evaluation.

4.3 Evaluation Protocol

To provide a fair comparison with the state of the art, we follow evaluation
protocol from [40], [42] and [23]. To asses the similarity between the machine
and user summaries we use the harmonic mean of precision and recall expressed
as the F-score in percentages.

F = 2× precision× recall

precision + recall
× 100 (9)

True and false positives and false negatives for the F-score are calculated per-
frame as the overlap between the ground truth and machine summaries, as shown
in Fig. 4.

User Summary

Machine Summary

True positive
False negatives

False positiveFalse positive

Fig. 4: True positives, False positives and False negatives are calculated per-frame
between the ground truth and machine binary keyshot summaries.

Following [12], the machine summary is limited to 15% of the original video
length and then evaluated against multiple user summaries according to [40].
Precisely, on the TvSum benchmark, for each video, the F-score is calculated as
an average between the machine summary and each of the user summaries as
suggested by [32]. Average F-score over videos in the dataset is then reported.
On the SumMe benchmark, for each video, a user summary most similar to the
machine summary is selected. This approach is proposed by [13] and also used
in the work of Lin and Chin-Yew [19].

5 Experiments and Results

Results of the VASNet evaluation on TvSum and SumMe datasets, compared
with the most recent state of the art methods are presented in Table 3. To
illustrate how well the methods learned from the user annotations we show a
human performance, which is calculated as pairwise F-scores between the ground
truth and all user summaries. In Table 2 we also compare the human performance
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Table 2: Average pairwise F-scores calculated among user summaries and be-
tween ground truth (GT) and users summaries.

Pairwise F score

Dataset
Among users
annotations

Training GT w.r.t.
users annotations
(human performance)

SumMe 31.1 64.2

TvSum 53.8 63.7

with F-scores calculated among the user summaries themselves. We can see that
the human performance is higher than the F-score among the user summaries
which is likely caused by the fact that the training ground truth is calculated as
an average of all user summaries and then converted to the keyshots, which are
aligned on the scene change-points. These keyshots are likely to be longer than
the discrete user summaries, thus having higher mutual overlap. The pairwise
F-score 53.8 for TvSum dataset is higher than the F-score 36 reported by the
authors [32]. This is because we convert each user summary to keyshots with
KTS and limit the duration to 15% of the video length and then calculate the
pairwise F-scores. Authors of the dataset [32] calculate the F-score from gold
standard labels, that is, from keyshots of length 2 seconds, a length used by
users during the frame-level score annotation. We chose to follow the former
procedure which is maintained in all evaluations in this work to make the results
directly comparable.

Table 3: Comparison of our method VASNet with the state of the art methods for
canonical and augmented settings. For a reference we add human performance
measured as pairwise F-score between training ground truth and user summaries.

SumMe TvSum
Method Canonical Augmented Canonical Augmented

dppLSTM [40] 38.6 42.9 54.7 59.6

M-AVS [15] 44.4 46.1 61.0 61.8

DR-DSNsup [42] 42.1 43.9 58.1 59.8

SUM-GANsup [23] 41.7 43.6 56.3 61.2

SASUMsup [35] 45.3 - 58.2 -

Human 64.2 - 63.7 -

VASNet
(proposed method)

49.71 51.09 61.42 62.37

In Table 3 we can see that our method outperforms all previous work in both
canonical and augmented settings. On the TvSum benchmark the improvement
is by 0.7% and 1% in the canonical and augmented settings respectively and
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2% lower than the human performance. On the SumMe this is 12% and 11% in
the canonical and augmented settings respectively and 21% below the human
performance. In Fig. 5 we show this improvements visually.

The higher performance gain on the SumMe dataset is very likely caused by
the fact that our attention model can extract more information from the ground
truth compared to the TvSum, where most methods already closely approach
the human performance. It is conceivable to assume that the small gain on the
TvSum is caused by the negative effect of the global attention on long sequences.
TvSum videos are comparatively longer than the SumMe as seen in Table 1. At
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Fig. 5: VASNet performance gain compared to the state of the art and human
performance.

every prediction step the global attention ’looks’ at all video frames. For long
video sequences frames from temporally distant scenes are likely less relevant
than the local ones, but the global attention still needs to explore them. We
believe that this increases variance in the attention weights, which negatively
impacts the prediction accuracy. We hypothesize that this could be mitigated
by the introduction of local attention.

5.1 Qualitative Results

To show the quality of the machine summaries produced by our method we plot
the ground truth and predicted scores for two videos from TvSum in Fig. 6. We
selected videos 10 and 11, since they are also used in previous work [42], thus
enabling a direct comparison. We can see a clear correlation between the ground
truth and machine summary, confirming the quality of our method. Original
videos and their summaries are available on YouTube. 6

6 https://www.youtube.com/playlist?list=PLEdpjt8KmmQMfQEat4HvuIxORwiO9q9DB

https://www.youtube.com/playlist?list=PLEdpjt8KmmQMfQEat4HvuIxORwiO9q9DB
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Fig. 6: Correlation between ground truth and machine summaries produced by
VASNet for test videos 10 and 11 from TvSum dataset, also evaluated in [42].

We also compare the final, binary keyshot summary with the ground truth.
In Fig. 7 we show machine generated keyshots in light blue color over the ground
truth importance scores shown in gray. We can see that the selected keyshots
align with most of the peaks in the ground truth and that they cover the entire
length of the video. The confusion matrix in Fig. 8 shows attention weights

Fig. 7: Ground truth frame scores (gray), machine summary (blue) and corre-
sponding keyframes for test video 7 from TvSum dataset.

produced during evaluation of TvSum video 7. We can see that the attention
strongly focuses on frames either correlated with low frame scores (top and
bottom image in Fig. 8, attention weights for frames ∼80 and ∼190) or high
scores (second and third image, frames ∼95 and ∼150). It is conceivable to
assume that the network learns to associate every video frame with other frames
of similar score levels.

Another interesting observation to make is that the transitions between the
high and low attention weights in the confusion matrix highly correlate with
the scene change points, shown as green and red horizontal and vertical lines.
It is important to note that the change points, detected with KTS algorithm,
were not provided to the model during learning or inference, nor were used to
process the training GT. Thus, we believe that this model could be also applied
to scene segmentation, removing the need for the KTS post-processing step. We
will explore this possibility in our future work.
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Fig. 8: Confusion matrix of attention weights for TvSum video 7 from test split 2.
Green plot at the bottom shows the GT frame scores. Green and red horizontal
and vertical lines show scene change points. Values were normalized to range 0-1
across the matrix. Frames are sub-sampled to 2fps.

6 Conclusions

In this work propose a novel deep neural network for keyshot video summa-
rization based on pure soft, self-attention. This network performs a sequence
to sequence transformation without recurrent networks such as LSTM based
encoder-decoder models. We show that on the supervised, keyhost video sum-
marization task our model outperforms the existing state of the art methods
on the TvSum and SumMe benchmarks. Given the simplicity of our model it is
easier to implement and less resource demanding to run than LSTM encoder-
decoder based methods, making it suitable for application on embedded or low
power platforms.

Our model is based on a single, global, self-attention layer followed by two,
fully connected network layers. We intentionally designed and tested the simplest
architecture with global attention, and without positional encoding to establish a
baseline method for such architectures. Limiting the aperture of the attention to
a local region as well as adding the positional encoding are simple modifications
that are likely to further improve the performance. We are considering these
extensions for our future work.

The complete PyTorch 0.4 source code to train and evaluate our model,
as well as trained weights to reproduce results in this paper, will be publicly
available on https://github.com/ok1zjf/VASNet.

https://github.com/ok1zjf/VASNet
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