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Abstract

In this work we present the modular Crowd Simula-
tion Evaluation through Composition framework (CSEC)
which provides a quantitative comparison between differ-
ent pedestrian and crowd simulation approaches. Evalu-
ation is made based on the comparison of source footage
against synthetic video created through novel composition
techniques. The proposed framework seeks to reduce the
complexity of simulation evaluation and provide a plat-
form from which the comparison of differing simulation al-
gorithms as well as parametric tuning can be conducted
to improve simulation accuracy or providing measures of
similarity between crowd simulation algorithms and source
data. Through the use of features designed to mimic the
Human Visual System (HVS), specific simulation proper-
ties can be evaluated relative to sample footage. Valida-
tion was performed on a number of popular crowd datasets
and through comparisons of multiple pedestrian and crowd
simulation algorithms.

Introduction

Pedestrian and crowd simulation has applications in a
wide range of industries including pedestrian facility suit-
ability and capacity [1], computer graphics and gaming [2],
the social sciences [3] and engineering [4]. This broad
range of uses has led to extensive research into how crowds
and pedestrians move around and interact with their envi-
ronment.

The problem of how to evaluate these simulation al-
gorithms is a developing area of research. One of the
most prominent issues with crowd and pedestrian simula-
tion research is the lack of a simple and suitable form of
comparison between different simulation and modelling ap-
proaches. This often means that a given methodology is de-
veloped and evaluated for a specific purpose, with its wider
abilities and properties left unconfirmed. This task is made
more difficult as the developed approaches cover a huge

range of applications, where evaluation techniques for one
are not always applicable to the others.

Generally the evaluation techniques utilised can be split
into qualitative [5] and quantitative measures [2, 1]. The
former including assessments made by experts in the field
or context of the intended application [3], as well as cat-
egory based rating systems [6] designed to define the ca-
pabilities of an algorithm (such as emergent behaviours).
These assess whether the simulation looks natural and that
the agents within the simulation are not acting in an unusual
fashion.

A number of quantitative measures have been suggested
to provide a numeric measure of accuracy for a simula-
tion, which include but are not limited to: speed, pedestrian
density, number of steps taken to destination and duration.
These evaluation techniques tend to be data driven, and as
such require some kind of ground truth data from which
to test against. The concept of an evaluation framework
has been suggested before [7, 8, 9, 10, 11, 12]; with most
deducing various metrics based on a simulation in an ef-
fort to rate simulation algorithms or tune parameters. Often
these frameworks evaluate the quality of a simulation based
on data driven methods i.e. how closely does simulated
agent A’s track match pedestrian A’s track in the source data.
This relies on the assumption that a good simulation must
mimic captured source data exactly, however, humans mov-
ing through the same environments on a regular basis will
look similar but have slightly different properties, rendering
this assumption flawed.

Many of these evaluation frameworks have merit in their
given context, however to make a comparison, often a
number of requirements are imposed on their source data.
Most commonly this pertains to tracks for the pedestrians
in source data, this introduces issues to the data collec-
tion process pertaining to cost, time, ethics and suitability
for large outdoor environments. Additionally the focus of
these frameworks is a statistical analysis of the simulations,
specifically on individual agents rather that of the simula-
tion as a whole meaning the way the simulation appears is
often overlooked.
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Figure 1: Source CCTV footage and generated composition
video with computer controlled agents.

To address these gaps in the existing research a new
modular evaluation framework is proposed allowing com-
parison of a simulation algorithm to source video footage
using limited ground truth data. Using novel compositing
techniques, a video comprised of the 2D background of a
source video and superimposed 3D agents (controlled by
the simulation algorithm), can be created (Figure 1). Us-
ing this simulated video, a direct comparison against the
source video can be performed using Human Visual Sys-
tem (HVS) features [13], analysing crowd properties such
as density, speed and track. Due to the modular nature of
the framework, both the composition techniques as well as
the video analysis methods are interchangeable as required.
This ensures the method is future proofed to new and im-
proved methodologies.

Due to the modular nature of the framework, any simu-
lation algorithm can be used, providing the facility to com-
pare the performance of different simulation algorithms rel-
ative to source material. The framework also provides the
functionality for model tuning, by creating a fast feedback
loop which allows the adjustment of model parameters to
improve simulation accuracy. Furthermore as the simulated
composite videos produced as part of the proposed frame-
work have a known groundtruth, they are very suitable for
the evaluation of pedestrian tracking algorithms.

This framework and the associated features are moti-
vated by the work in [13] and looks to improve on the ideas
proposed. As such, the following novel framework is sug-
gested which reduces the complexity of crowd and pedes-
trian simulation evaluation, providing a quantitative com-
parison regardless of context. Simulated video sequences
are created using sample video data and crowd simulation
algorithms, combined using novel compositing and visuali-
sation techniques. Through the use of background subtrac-
tion and scene composition to generate simulated video se-
quences, lengthy scene reconstruction steps are eliminated
simplifying the overall process. The paper will continue
as follows: firstly, an overview of the research in this field
is given, next, the proposed modular framework and com-
positing methodology are introduced and an overview of
HVS features presented. Finally the evaluation process is

reviewed and conclusions drawn.

Literature Review
Within this section a brief overview of current simula-

tion algorithms is given, followed by a review of existing
evaluation metrics and frameworks.

Simulation Algorithms

Simulating behaviour virtually has been an area of in-
tense research in recent years, one of the first agent-based
simulation algorithms was proposed by Reynolds in [14, 15]
which focused on birds flocking, and was later developed
and better defined for gaming applications. Later Helbing
et al [16] introduces the Social Force Model (SFM). This
became widely successful due to its ability to emulate com-
mon attributes seen in pedestrian movements and emergent
behaviours in crowds such as line forming in tight areas.
Another key advantage of this model was the use of vari-
ables that related to physical principles in our world. The
use of these parameters allowed the application of other
forms of research to drive the simulation and formed a basis
for evaluation. Another example of this type of approach
is proposed by Xi et al [4]. Here a dense model is pro-
posed integrating extended decision field theory, the social
force model and a dynamic planning algorithm involving
AND/OR graphs. Extensive testing is done on potential
profit for a shopping mall where factors of an agents AI, for
example group dynamics, visual field or intention to buy,
are changed. However no real validation based on real re-
sults is presented. Survey and observation data is used in
the setting of these model parameters.

With the advent of so much research in the area of pedes-
trian simulation, the ability to determine what is a good sim-
ulation has been well researched and is very much a topic
for debate. As such work has been done to survey the cur-
rent research with a number of different simulation algo-
rithms and models being put through the same test environ-
ments [6, 17, 18, 19, ?, ?]. Evaluations are based on proper-
ties such as computational performance as well as the pres-
ence of emergent behaviours and a model’s abilities, such
as route choice and agent strategy. Additionally numerical
metrics are introduced spanning areas such as speed and ac-
celeration, distance covered, time and collisions. However
there is no real analysis of the quality of simulated visual
experience, i.e if the methodology produces visually simi-
lar or natural behaviour, which is often a key requirement
of the design.

In more individual cases it is seen that often the evalu-
ation technique is limited by the context. This of course
makes sense but often means that other key aspects of a
simulation implementation are not analysed. For example
in evacuation simulations, the ground truth data often does
not exist from which to compare, leaving only qualitative
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assessments by experts in the field [3] leaving any other
properties that these algorithms have un-explored.

Portez et al [5] focuses on the simulation of crowds
around bottle necks and looks for events. Here density
matching against recorded video footage is used as a quanti-
tative measurement, more specifically number of people per
square meter. This is backed up using visual checks against
the original footage to ensure the simulated crowds resem-
ble those in the captured data. Pettre et al [20] introduces
an agent interaction method and uses density plots based on
aspects of the simulation, such as reaction times, as well
as a defined likelihood function to perform their evaluation.
The likelihood function is based on simulation variables and
the assessed difference from captured source data, however
these are only implemented on interaction scenarios com-
prising of two people and as such their validity as metrics
for larger scale crowd simulation remains untested.

Kim et al [2] manages a quantitative assessment of mod-
elled scenarios by looking at psychological studies of spe-
cific situations. I.e looking for a simulation to repeat obser-
vations made. For example, a study of pedestrians average
crossing speeds relative to the start of the crossing signal
[21]. This is then compared with the outputs of the simula-
tion to provide a similarity measure. This is a more abstract
approach as they are not comparing specific paths but rather
duration, focusing on the properties of the simulation rather
than specific paths.

Simulation Evaluation Frameworks

Charalambous et al [7] looks at the creation of an anal-
ysis tool that characterises outlying behaviour in simula-
tions. Two processes are suggested; outlier detection which
searches for odd behaviour within that simulation and nov-
elty detection, which finds trends or actions that differ from
some reference data. However for a good analysis, ref-
erence data must be very similar to the simulated. Addi-
tionally as the comparison made is purely a data driven ap-
proach the concept of something looking similar is not ad-
dressed.

Guy et al [9] uses a computed entropy score to compare
simulated data to captured real world data. The metric is
defined as the entropy of the distribution of errors between
the evolution of a crowd predicted by a simulator and the
source data. Using three differing datasets ranging from
simplistic to dense crowds, evaluations are done to produce
simulations that closely resemble the source data. This sta-
tistical analysis again relies on the need for position infor-
mation from both the simulation and comparable real world
examples. Additionally a number of assumptions are made,
the most noticeable being that the crowd simulator is not
systemically more accurate for some agents within a crowd
than for others, however this is not always accurate as their
will always be aspects of a simulation that are more accurate

than others [7].
Wang et al [22] present the Stochastic Variational Dual

Hierarchical Dirichlet Process (SV-DHDP) model in which
groups of similar trajectories (trending paths) can be com-
bined to generate an overall path pattern for an environ-
ment. The path patterns created are therefore the result
of local dynamics and global factors allowing differing in-
sights based on the simulation environment. The resultant
visualisations allow for detailed qualitative analysis and the
introduction of an inference based similarity metric allows
for the comparison of extracted path patterns from differ-
ing data sources. Providing a good generalised view of a
given scene. However analysis is done on defined paths for
source and test data which requires complex post processing
techniques or data captured in a specific format which can
create inaccuracies [1], more accurate systems can be used
[23] but are not always cost effective due to the requirement
of specialized equipment.

Lerner et al [24, 25] address the concept of look and feel
of a crowd by assigning a similarity metric by comparing
an agent’s actions at a given moment in time to a database
of observed actions. The database is taken from annotated
frames of video, defining path vectors for pedestrians in
both sparse and dense crowds. A state-action pair for each
frame is defined using firstly a state (set of recorded vari-
ables such as trajectory, speed and position) and an action
(a density measure representing local density changes over
time). The similarity between a state-action pair from the
database and a test state-action pair is defined as the simi-
larity between the actions (differences in positions along the
trajectories) and the distance between the states (differences
in densities for the surrounding regions).

Musse et al [12] also address the issue of tracking gener-
alised paths in crowds using four dimensional histograms to
describe movement within a crowd. By applying the Bhat-
tacharyya distance as a form of measurement between the
defined features similarity is assessed on criteria such as
speed, spacial occupancy and orientation. The results pro-
duce similarity measurements for aspects of orientation and
speed but fail to take into account the density of the crowds.
Additionally no analysis of what is visually similar is given
which highlights a systemic problem with many of the simi-
larity features suggested such that evaluation is given based
on similarity to extracted trajectories but not on if the results
look the same to a group of people.

Additionally the work in [11, 26] proposes interesting
similarity metrics and [10, 27] are also worth mentioning.

The proposed framework is focusing on providing a sta-
tistical analysis of the realism in different simulations. In
order to evaluate the realism of a crowd or pedestrian sim-
ulation algorithm, vision based features are utilised. Mo-
tion estimation [28, 29] and tracking are a few of the vi-
sion based steps applied during the process of pedestrian
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and crowd behavior analysis for visual surveillance in dy-
namic scenes [30, 31].

The majority of today’s optical flow methods strongly
resemble the original formulation provided by Horn and
Schunck [32] as well as the work by Lucas and Kanade
[33]. The accuracy and robustness of optical flow esti-
mation algorithms has seen significant improvement over
the last decade [34, 35, 36]. Additionally work in tracking
pedestrians and crowds has also seen much work [37, 38].
Specifically techniques have been developed for estimat-
ing the flux of people in public areas, such as stores or
travel sites, which can then automatically provide conges-
tion analysis assisting in management of crowds and pedes-
trians [39, 40, 41].

A technique that incorporates optical flow for accuracy
evaluation in crowd simulation was proposed in [42]. In this
work a solution is proposed which allows the relationship
of optical flow to physical velocity to be defined. The main
issue of this approach is that it requires manual annotation
and performs well only for specific relative orientations of
the camera and pedestrians.

All these approaches for pedestrian and crowd simula-
tion evaluation either do not consider the quality of simu-
lated visual experience, or fail to compare their given met-
ric with human validation. Additionally the requirement for
data with a defined groundtruth introduces issues pertaining
to cost, time, ethics and suitability for large outdoor envi-
ronments. All key components when considering the acces-
sibility and accuracy of crowd simulation evaluation.

Methodology

Simulation Evaluation using Compositing Tech-
niques

The following section will explain in detail the various
aspects of the proposed modular Crowd Simulation Evalu-
ation through Composition (CSEC) framework. The frame-
work provides a method of simulation algorithm evalua-
tion which rates how realistic simulated human walking be-
haviours look compared to sample footage. Evaluation can
be done on a frame by frame basis or on a sequence as a
whole, providing flexibility in how the simulation is eval-
uated. Additionally the proposed methodology requires no
track or path information for the source material, allowing
any pedestrian video footage captured from a static view-
point to be used as source material. Evaluation of an al-
gorithm’s performance is key to defining how realistic the
simulation outputs are.

Comparison is made using the original source footage
and a video created using composition techniques. This
utilises background subtraction techniques as well as meth-
ods to extract 3D data from 2D images. This allows the con-
struction of a 3D space in which virtual agents can navigate

around. Through the use of composition, a final visualisa-
tion combining this background and 3D space is generated
to form the simulated video sequence in which simulated
agents are superimposed into the background of the source
video data. Analysis of these generated videos is through
the use of features designed to evaluate the visual similarity
of the two videos to provide a quantifiable similarity metric.
These are designed to emulate the way the Human Visual
System (HVS) perceives motion, and include the principles
of Weber’s Law [43] to better match the metrics to the way
humans see.

Fundamentally the framework is made up of two com-
ponents; simulation visualisation and video similarity. Im-
portantly the modular nature of the framework supporting
inputs of any simulation algorithm or video analysis tech-
niques, depending on application, whilst still retaining the
ability to produce a quantifiable similarity score (Figure
2). The HVS features [13] provide a good generalisation
of simulation evaluation requirements in a broad range of
situations, however additional feature descriptors could be
developed and inserted into the framework to determine
other crowd statistics such as lane formation and direction
of travel. Figure 3 provides a more specific overview of the
CSEC framework as it is utilised in this work. Further detail
of each section will follow.

As the framework compares video data to derive a sim-
ilarity value, firstly a simulated video must be constructed.
Initially, using the source video sequence, the background is
extracted. Next, a two dimensional plane is extracted repre-
senting a top down view of the given scene. Simulations are
run to produce paths for virtual agents to follow based on
the extracted plane. The visualisation component is used to
composite the extracted 2D background image and 3D ren-
dered agents as they follow the simulated paths. Frames are
output from the visualisation into a final simulated video se-
quence (Figure 4). Once both a simulated and source video
are available, the similarity can be evaluated. Optical flow
and tracklet analysis are run and features extracted from the
subsequent data. Finally a distance measure is used to eval-
uate the difference in features to give the final similarity
metric.

Background and Plane Extraction

To allow the composition of the simulated video to be cre-
ated, the background of the source video sequence is re-
quired. For this work the mean value of each pixel in a
video sequence is used to create a compound background
image. Other methods based on Gaussian mixture models
could also be used in order to obtain more accurate results
[44].

Once the background image has been subtracted the pro-
cess of defining the perspective grid is applied. The per-
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Figure 2: Outline of the modular nature of the Crowd Simulation Evaluation through Composition (CSEC) framework. Using
an initial source video, an analysis stage produces the inputs for simulation and visualisation. Simulation generates the paths
that the agents will follow and the visualisation modules combine these aspects to create the simulated video. The video
features module is concerned with the comparative aspect of the framework and the similarity score created as an output.
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Figure 3: Overview of the Crowd Simulation Evaluation
through Composition (CSEC) framework.

Figure 4: Frames of source CCTV footage and generated
video using the composition techniques.

spective grid allows scale mapping of an environment from
the viewpoint of the source video camera pose. The re-
sultant grid represents a top down environment map of the
viewable area and is used during agent simulation. Using
the concept of perspective scale along a line we can, through
the definition of two parallel lines that run to the vanish-
ing point of an image, estimate distance in arbitrary units

of measure within this perspective space (Figure 5b). This
unit can be based upon an object in the scene with known
dimensions or using pedestrians [45].

Initially the user defines the points i and j, in the 2D
image space, forming a line along an edge that leads to the
vanishing point of the image. A second line is defined by
the points k and l, such that it runs ‘parallel’, relative to the
vanishing point in the 3D space of the captured image, to
the line defined by points i and j (Figure 5a).

At a location along the line ij the user defines another
point u1, such that the line iu1 represents the unit of dis-
tance m from which all further perspective points are de-
fined. An additional point u2 is defined on top of the line
ik which represents the same relative distance in 3D space
as m.

For the next step of the proposed algorithm the reference
points Tvanish, R, R0 and Tn−1 are initialised automati-
cally (Figure 5a).

Tvanish

l
jj

R

T R

ki

u1

u

Tn‐1 R0

m

m

ki u2

Tvanish

l
j

G

Gn+2

T

j

G T

Tn

Gn+1 Tn+1

R

RGn Tn‐1 R0

ki u ki u2

Figure 5: (a) User defined points and initialisation. (b) The
first two iterations of the recursive algorithm.

In more detail, the vanishing point Tvanish is defined as
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the point at which the lines ij and kl intersect, this may well
be at a position outside of the image plane. As such Tvanish

is defined as

Tvanish = f(i, j,k, l) (1)

An arbitrary point R is selected at a random location
outside the triangle iTvanishk. The point Tn−1 is defined
as the point of intersection of the lines iR and kTvanish

Tn−1 = f(i,R,k,Tvanish) (2)

Finally the point R0 is defined.

R0 = f(u1,Tn−1,R,Tvanish) (3)

With these points initialised a recursive algorithm is ap-
plied to calculate equidistant points along the line iTvanish

in 3D space. As the user has already defined the first of
these points u1, for the purposes of the recursive step, these
will be relabeled as Gn. This is a two-step iterative pro-
cess, with the point Tn being defined as the intersection of
the lines GnR and kTvanish.

Tn = f(Gn,R,k,Tvanish) (4)

and during the second step the next equidistant point Gn+1

on the line iTvanish is expressed as a function of

Gn+1 = f(R0,Tn, i,Tvanish) (5)

This process is repeated until Gn+1 is no longer within
the borders of the original background image.

The grid is initially defined using all the equidistant
points on the line ik using the distance iu2 as a unit. Lines
are defined between each of these points and the vanish-
ing point Tvanish of the image. The scale points G are
plotted along each of these newly defined lines forming the
grid. Additionally if required, the recursive process can be
inverted to create points moving away from the vanishing
point. This ensures that the entire image plane is encapsu-
lated by the defined grid, regardless of where the user has
defined their points.

The resultant grid represents the perspective plane of the
source image. On that grid the areas (cells) with obstacles
(i.e. cells where pedestrians cannot walk) are annotated as
is information about entrance/exit locations. In order to help
the user; the obtained grid is superimposed on the extracted
background image (Figure 6). Here red cells indicate areas
where agents can walk, white represent obstacles and green
marks an entrance or exit. This annotated version of the
perspective plane is then used as the ground plane by the
simulation algorithms.

Figure 6: Resultant perspective grid overlayed on the orig-
inal source image. Red cells indicate areas where agents
can walk, white represent obstacles and green marks an en-
trance or exit.

Pedestrian and Crowd Simulation Algorithm

To simulate the agent movement through a given scene
an algorithm based on a combination of simulation method-
ologies is used. Firstly a steering simulator based on the
work of [15] in which the concepts of simple crowd be-
haviours such as separation, object avoidance and agent col-
lision detection are utilised. These have been implemented
with the social forces model structure in which each of these
elements produce a force applied to the agent to adjust their
movement vector. The magnitude of these forces is based
on distance. An additional step, using a planning simula-
tion methodology, based on the work of Karamouzas et al
[46] is used as a predictive collision detection algorithm to
produce natural agent avoidance within the simulations, this
again is implemented by the application of a force upon the
simulated agent. As outlined in (6).

Fa = ga − pa +

n∑
i=1

f(a, bi) +

m∑
j=1

f(oj) +

o∑
k=1

f(a, bk)

(6)

where ga is the current destination along the path of the
agent a to its final goal, with pa being the agent’s current
position. The forces for separation, f(a, bi), object avoid-
ance f(oj) and the predicative agent avoidance f(a, bk), is
calculated for any relevant entity within a defined neigh-
bourhood. For overall path planning, an agent performs a
route plan using the A* algorithm and the perspective plane
obtained previously to estimate the most direct course from
their start location to their destination. The variables associ-
ated with defining an agent and their respective movements
are based on existing work used by Asano et al. [1, 47] who
in turn derive their values from the existing studies and from
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Figure 7: Example composition of the Kvan scene with test
agents and perspective floor plan.

observational data from their datasets.

Composition and Visualisation

The visualisation stage of the framework performs the
composition of a scene utilising the extracted background
obtained from the source video and the generated perspec-
tive plane. The key to a visually similar composition is the
positioning of a virtual camera at the same location as in
the original scene. By using layers the camera can have the
source image as a background and the visualised 3D agents
controlled by the simulation superimposed. Due to this, it
is important to line up the perspective plane with the back-
ground to give the illusion of the agents walking through
the scene. This alignment can be performed manually using
the position and orientation of the camera or automatically
using camera calibration techniques [48, 49].

Sample agents are then placed in the scene at various
locations to ensure that the perspective and scaling param-
eters of the agents are appropriate to the scene. Figure 7
demonstrates this with agents in blue positioned at different
locations in the scene. These values can be adjusted manu-
ally or calculated automatically using the methods provided
in [50]. In Figure 7 it can also be seen that the imported
floor plan is coloured according to each cell’s defined val-
ues, green meaning areas the agents can walk and blue de-
fines entrance exit points and red represents obstructions
that will obscure the agents when they are located behind.
To control the agents in the scene, position and orientation
information is required for each frame. This is obtained us-
ing the desired simulation algorithm and the same perspec-
tive grid map outlined in the Simulation section.

As the goal is to create videos with similar crowds, a
number of parameters from the original video are required.
Using the source video sequence, an analysis is made of

the pedestrians in the scene, outlining paths and estimated
crowd density. For this work the information was extracted
manually or provided by the datasets used, however work
exists to help automate this process [22, 11]. Once all the re-
quired parameters for the agents are defined the simulation
is run and outputs recorded at the frame rate of the original
source video.

Finally, with the composition completed and the simula-
tions run the visualisation of the scene is performed. Agent
models are created and sized according to the obtained pa-
rameters. For each frame of the simulation the agent lo-
cation and rotation is updated based on the simulation al-
gorithm output and a composite frame is captured. Once
visualisation is completed the individual frames are com-
piled into a video sequence. Importantly the resolution and
the number of frames in the new composite video should be
equal to that of the source video.

Simulation Similarity Metrics

Once visualisation of the composite video is complete,
the source and the simulated video sequences are used to
extract features in order to measure their level of similarity.
These features are based on the optical flow and tracklets of
the moving objects in both sequences.

An optical flow method tries to calculate the motion be-
tween two image frames at times t and t + δt at each pixel
position [33]. The solution as given by Lucas and Kanade
is a non-iterative method, which assumes a locally constant
flow in a small window. Black and Anandan in [34], de-
scribe how the single motion assumption, as well as the
constant brightness constraint are not always valid. They
discuss how these assumptions can be relaxed in order to
develop a more robust estimation framework.

Tracklet estimation is a well researched topic with many
algorithms available in the literature. These can be based
on motion or other features and utilise particle and Kalman
filters [37, 38, 51, 52]. Specifically, the problem of motion
based tracking can be split into detecting moving objects in
each frame and the association of those moving elements to
a continuous corresponding object over time.

In the case of Kalman filters, the track’s location in each
frame is predicted and a likelihood of a detection is as-
signed to each track. The Kalman filter is a recursive es-
timator, meaning that only the estimated state from the pre-
vious time step and the current measurement are needed
for computation of the current state. The Kalman filter has
two distinctive features; firstly its mathematical model is
described in terms of state-space concepts; Secondly, the
solution is computed recursively. Usually the Kalman fil-
ter is described by a system state model and a measurement
model.

In this system the optical flow algorithm proposed in [34]
and the tracking method presented in [51] were utilized,
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however the system is designed in such a way that allows
the incorporation of multiple motion estimation or tracking
methods as plugins. Based on this system architecture the
proposed evaluation framework is dynamic and capable of
utilizing current and future state of the art tracking methods.

Motion and Tracklet Flux Similarity Metrics

In order to evaluate the similarity level of the simulated and
source videos a new metric is required that will allow an ob-
jective comparison incorporating the Human Visual System
(HVS) based similarity features. Weber’s Law [43] and the
work in [53, 54] states that a human’s ability to define mo-
tion, as the point when the signal-to-noise ratio is regarded
as at a stimulus intensity. Therefore, the minimum motion
contrast dV as a function of background motion V , required
for the human visual system to notice a change is expressed
as:

dm = L
dV

V
(7)

where dm is the differential change in motion percep-
tion, dV is the differential increase in the velocity and V is
the velocity. The parameter L is to be estimated using ex-
perimental data. The proposed measure includes Fechners
Law, which relates velocity V , to perceived motion, M, as
seen by the human visual system, as follows:

M = Lln(
V

Vmax
) (8)

where Vmax is the upper threshold of the human eye.
The proposed metric is based on the motion and tracklet flux
histograms obtained from the perceived motion M utilizing
standard computer vision algorithms.

Let us assume that IR(~u, t) and IS(~u, t) are the image
frames of a real and the correspondent simulated scene, re-
spectively. The motion vectors for each pixel location in
each frame are estimated using the optical flow techniques
shown in (9) and (10).

MR(~u, t) = f(IR(~u, t), IR(~u, t− 1)) (9)
MS(~u, t) = f(IS(~u, t), IS(~u, t− 1)) (10)

The estimated tracklets are obtained using motion infor-
mation and Kalman filters.

TR(nR, ~u, t) = f(MR, IR) (11)
TS(nS , ~u, t) = f(MS , IS) (12)

Since the motion vectors and the tracklets are available
the Histogram of Oriented Optical Flow (HOOF) [55] is cal-
culated both for the real and simulated scenes.

fHOOF
R = HOOF (MR) (13)

fHOOF
S = HOOF (MS) (14)

Also, a 2D histogram of the motion parameters is ob-
tained using (15) and (16).

fH2D
R (rij) = mij(MR) (15)

fH2D
S (rij) = mij(MS) (16)

where rij is the ith and jth motion level in an interval, and
mij is the number of pixels in all the given frames whose
motion level is rij . Regarding the tracklets, the time pa-
rameter in (11) and (12) is removed by superimposing all of
them at the same time instance. The similarity metric here
can be applied on any given time interval, which can be the
whole sequence or a small time fragment. In the same way
as in (15) and (16) we obtain:

fTR (rij) = mij(TR) (17)

fTS (rij) = mij(TS) (18)

Finally, the flux of the features in (13) - (18) is repre-
sented by the surface integral of the given vector field.

Φ(~u, t) = Σ~uΣtfdudt (19)

Based on (19), we obtain ΦHOOF
R , ΦHOOF

S , ΦH2D
R ,

ΦH2D
S , ΦT

R and ΦT
S that correspond to the proposed HVS

features. All the features can be applied either on the whole
sequence or on smaller blocks allowing specio-temporal
adaptation of the proposed features and metrics. In order
to measure the similarity and rank the algorithms, the Bhat-
tacharyya distance is utilised due to its use in similar work
[12].

Results
To evaluate the proposed Crowd Simulation Evaluation

through Composition (CSEC) framework, a total of five dif-
ferent scenes were used from various crowd datasets (Mall
Dataset [56], PETS2009 [57] and RBK [58]) and captured
crowd and pedestrian videos sequences. Scenes of differ-
ent environments including both indoor and outdoor spaces,
with a large range of camera orientations and crowd config-
urations. Additionally the frame rates of the videos varied
from less than 10fps up to 24fps providing a challenging
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Figure 8: Example source and simulated frames. Top Row
(Source): Road, Mall, Krad2. Bottom Row (Simulated):
Road, Mall, Krad2.

and diverse set of scenes from which to evaluate the effec-
tiveness of the evaluation framework.

Composite simulated videos for each of the tested scenes
were created using four different levels of agent speed and
three different population levels, totalling 12 simulations
and therefore 12 composite videos per scene. This demon-
strates the framework’s ability to evaluate source footage
against a single simulation algorithm. An additional 12
composite videos were created using Reynolds’ flocking al-
gorithm [14], providing a comparative test between simu-
lation algorithms and demonstrating a comprehensive as-
sessment of the relative features of the framework. Figure
8 presents example source and simulated frames for a few
scenes.

For each scene the background image was extracted and
the perspective grid defined. Simulations were performed
for each of the cases mentioned previously and the outputs
used to create composite visualisations for each. Simulated
videos were then created with the same frame rate, length
and resolution as the source videos. The simulations them-
selves are run at a set frame rate (50 frames per second), a
desired frame rate is also specified allowing for the move-
ment of the agents to be visualised at the same frame rate as
the source video without having to adjust the agent proper-
ties between simulations.

Each simulated video, and its respective source video,
had the optical flow and tracklets estimated. Finally the
HVS features [13] were used to compare each visualisation

Table 1: Average Bhattacharyya distance between source
and each simulated video sequence using the simulation al-
gorithm outlined in the Simulation section, across all five
Scenes for ΦHOOF features.

Agents Speed
# Agents Very Slow Slow Same Fast

Few 9.32 9.07 8.08 8.01
Same 9.42 8.41 7.33 7.91
Many 9.41 8.83 8.95 9.47

against its source. Three features were used in the com-
parison, the tracklets (ΦT

R (11) and ΦT
S (12)), Histogram of

Orientated Optical Flow per frame (ΦHOOF
R (13), ΦHOOF

S

(14)) and the Histogram of Orientated Optical Flow for the
sequence (ΦH2D

R (15), ΦH2D
S (16)).

The HOOF features and 2D Histograms used a window
size of 64×64 pixels per frame. Using these features, a gen-
eralised statistical measure of the differences in movement
from the source human behaviour to the simulated agents is
defined. The distance metric used to compare the features
is the Bhattacharyya Distance [59] due to its use in similar
work. For these experiments no pre-defined groundtruth is
required, instead each scene has the number of agents and
their speed estimated. It is expected that simulations that
have a similar number of agents and relative speed to the
source video will produce the lowest distance measure.

Tables 1 - 4 (left side) contain the average distance mea-
sures, after applying equation (19), across all tested scenes
for the 12 composite videos using the algorithm outlined
in the Pedestrian and Crowd Simulation Algorithm section.
As expected the lowest distance values are seen when the
simulation parameters closely match those of the source
material. Also in Table 4 the average feature combina-
tion results are given for the composite videos generated
using the Reynolds flocking algorithm [14], in these sim-
ulations the same initialisation values and constraints were
applied as in the previous results. The cells of the table are
coloured green-yellow-red, whereby green is a low distance
and therefore a close match to the source footage and red
represents a large measured distance and therefore less ac-
curate simulation. Therefore Table 4 demonstrates a direct
comparison where it can be seen that the distance measures
from the source footage for the Reynolds [14] algorithm
are consistently higher than seen in the comparative results
from the proposed simulation algorithm. This is logical
as modern alternatives to Reynolds [14] flocking algorithm
should present more realistic movement. This demonstrates
that the suggested framework provides a useful comparison
tool from which to analyse simulation similarity.

To further evaluate the methodology, a group of ten peo-
ple were asked to rate the 12 simulated visualisations cre-
ated using the simulation algorithm outlined in the Pedes-
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Table 2: Average Bhattacharyya distance between source
and each simulated video sequence using the simulation al-
gorithm outlined in the Simulation section, across all five
Scenes for ΦH2D features.

Agents Speed
# Agents Very Slow Slow Same Fast

Few 2.50 2.19 2.10 2.24
Same 2.63 2.52 2.44 2.55
Many 2.86 2.69 2.71 2.88

Table 3: Average Bhattacharyya distance between source
and each simulated video sequence using the simulation al-
gorithm outlined in the Simulation section, across all five
Scenes for ΦT features.

Agents Speed
# Agents Very Slow Slow Same Fast

Few 4.90 3.33 2.49 3.34
Same 4.59 2.91 1.45 3.48
Many 6.19 4.33 4.95 3.89

trian and Crowd Simulation Algorithm Section, against
their respective source material. Focus was given to evaluat-
ing the speed, number and track of the agents in each video
compared to the source. Using the Mean Opinion Score
(MOS) method, the participants were asked to provide a rat-
ing of one to five where five represented a high similarity to
the source material and one a strong dissimilarity. The val-
ues for all the participants were averaged to give a score for
each scene. This evaluation technique demonstrates how
similarly the proposed features and metrics react compared
with the participants Human Visual Systems. The results
are contained in Table 5, here the same green-yellow-red
colour scheme is employed to allow comparison with Table
4, in these cases it is expected that a similar colour distribu-
tion should be seen between the tables.

The left three columns of Table 6 is a breakdown of in-
dividual features against the human participant’s ability to
evaluate video properties. It can be seen that in certain in-
stances the correlation between human and specific feature
types is reasonably high. However by using the weighted
sum of all three proposed metrics, and again comparing to
the MOS, a more robust methodology is seen. This is not
surprising as it is often observed that humans have diffi-
culty distinguishing the difference between large amounts
of slow moving agents versus a smaller amount of agents
moving faster. As a result the combination of distance met-
rics from all three features more closely matches the Human
Visual System’s ability to evaluate motion. The weighting
of the combination in this case is equal, however the opti-
mal combination will be application dependant. Some met-
rics will perform better on different types of scenario. For

Figure 9: Side by side tracklet comparison for Road and
Kvan. (a-b) Still from source Road video and tracklet. (c-
d) Still from simulation and tracklet. (e-f) Still from source
Kvan video and tracklet. (g-h) Still from simulation and
tracklet.

example videos recorded from a lower point of view may
not return descriptive tracklet information. To better match
the HVS feature outputs with human perception Weber’s
Law is incorporated (7), the right three columns of Table 6
demonstrate the improvement seen to the MOS correlations
by doing so. In all cases the combination of metrics bet-
ter correlates to the human perception of movement in the
videos.

By using the average distance from all of the three pro-
posed features a robust system is demonstrated. However
each of the individual features provides a unique insight
into the simulation accuracy. For example, evaluation of
the tracklets allows an insight into how accurately the sim-
ulation model replicates the movements of the source mate-
rial. As such in complex scenarios where the source agents
change direction a number of times, a strong dissimilarity
is expected, likewise in more simplistic scenes where the
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Table 4: The average Bhattacharyya distance between source and each simulated video sequence using the simulation algo-
rithm outlined in the Simulation section and, for comparison Reynolds [14], across all five scenes for the feature combination.
Results have been colour coded to provide a heat map of similarity, where green represents low distance from source video
and red high.

Proposed Method Reynolds [14]
Agents Speed

# Agents V. Slow Slow Medium Fast V. Slow Slow Medium Fast
Few 3.15 2.45 2.44 2.47 2.82 3.38 3.60 2.97

Same 3.11 2.63 2.22 2.74 3.49 3.66 3.80 3.27
Many 4.01 3.06 3.29 3.09 3.73 3.67 3.85 3.66

- 5.0

- 1.0

- 3.0

Table 5: Mean Opinion Score (MOS) of human observa-
tions of similarity. Results have been colour coded to pro-
vide a heat map of similarity, where green represents high
MOS for observed similarity to source video and red low.
Provides a visual comparison between the MOS scores and
the frameworks distance metrics.

Speed of Agents
# Agents Very Slow Slow Medium Fast

Few 1.02 2.95 3.35 2.32
Same 1.92 3.27 4.36 2.87
Many 1.53 3.18 3.45 2.72

- 1.0

- 5.0

- 3.0

Table 6: Correlation (Pearson) between combination fea-
tures distance and MOS, with and without Weber’s Law ap-
plied.

Without Weber With Weber
Metric Avg Agts Spd Avg Agts Spd

ΦHOOF 0.67 0.49 0.70 0.54 0.31 0.62
ΦT 0.59 0.46 0.60 0.63 0.59 0.57

ΦH2D 0.24 0.06 0.41 0.28 0.02 0.44
Comb 0.55 0.36 0.60 0.61 0.44 0.65

simulation agents closely follow the source tracks a low dis-
similarity is expected. A visual example is given in Figure
9, where it can be seen in the first scene (a-d) that there
is an obvious visual difference between the source and the
simulation, whereas in the second scene (e-g) the similarity
is much higher. This is visualised using the tracklet plots
which represent a compound image of the tracklets over the
duration of the video.

Utilising the HOOF feature per frame and per sequence,
an analysis of the amount of movement and magnitude of
the optical flow can be made. Visualised examples of these
two features are presented in Figures 10 & 11. Figure 10
is the compounded HOOF features for an entire sequence.
The Figure 10 (a-b) represents the source material, with (c-
d) being the simulation with similar values for number of
agents and their speed. Figure 10 (e-f), (g-h) represent low

Figure 10: Histogram of Orientated Optical Flow per se-
quence using Road (Left example still from the video se-
quence and right, HOOF visualisation). (a-b) Source image,
(c-d) medium, (e-f) low and (g-h) high speed and number of
agent examples.

and high levels of movement respectively. Figure 11 is the
HOOF features using an individual frame. As before (a-b)
is the source with (c-d), (e-f) and (g-h) being simulations
with the previously mentioned parameters. In both cases
its clear to see how the adjustment of speed and number of
agents affects the output. Additionally effects on the track-
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Figure 11: Histogram of Orientated Optical Flow per
frame using Krad2 (Left: example still from the video se-
quence. Right: HOOF visualisation).(a-b) Source image,
(c-d) medium, (e-f) low and (g-h) high speed and number
of agent examples.

lets can be seen. In the examples where the agent’s speed
is very low, parts of the scene are left unchanged by agent
movement.

Conclusion

A novel Crowd Simulation Evaluation through Compo-
sition (CSEC) framework was presented which reduces the
complexity of simulation evaluation and provides tangible
and relevant metrics that can be used for comparison and
parametric tuning. To extract and produce simulated video,
a semi-automated perspective plane extraction process is in-
troduced which allows the conversion of source material
into a composited video with controlled agents (3D mod-
els) replacing those of the humans. Through the use of a
modular system, any crowd or pedestrian simulation model
can be evaluated and compared by generating agent mo-
tion for use in the final visual simulation. Additionally,
any video analysis feature can be utilised to evaluate sim-
ilarity. Through evaluation on a large range of challenging
and diverse scenes, it has been shown that the methodol-
ogy presents quantifiable measures of video properties such
as speed and number of agents. Utilising HVS features
to replicate the human’s ability to perceive movement, the
framework outputs correlate well with human participant
analysis of the same videos showing that the system closely

emulates the Human Visual System.
The Crowd Simulation Evaluation through Composition

(CSEC) framework introduces a number of key benefits
over existing methods. As the framework only takes in a
source and simulated video as an input, a number of the
time consuming ground truth and annotation steps, such as
pedestrian tracks, are reduced. The framework also allows
researchers who wish to compare their algorithm against
others a quick and efficient way of doing so, either by us-
ing the same well-known source material and datasets in the
field or simply rerunning the framework with other pedes-
trian or crowd simulation algorithms to compare with. Ad-
ditionally for model tuning; the proposed method can create
a fast feedback loop that allows the modification of param-
eters to improve simulation accuracy. As the ground truth
data for any simulated visualisations is already intrinsically
known, and as specific testing scenarios and behaviours can
be simulated, the methodology is also very suitable for the
evaluation of pedestrian tracking algorithms on video data.
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