

Management Of Networked IoT Wearables – Very Large Scale
Demonstration of Cultural Societal Applications

(Grant Agreement No 732350)

D7.1 Test and Integration Plan

Date: 2017-08-31

Version 1.0

Published by the MONICA Consortium

Dissemination Level: Public

Co-funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under Grant Agreement No 732350

 D7.1 Test and Integration Plan

Document version: 1.0 Page 2 of 49 Submission date: 2017-08-31

Document control page

Document file: D7.1 Test and Integration Plan v1.0.docx
Document version: 1.0
Document owner: ATOS

Work package: WP7 – Components & Cloud Integration
Task: T7.1 – Continuous Integration and Support
Deliverable type: R

Document status: Approved by the document owner for internal review
 Approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Jan Benadik (ATOS) 2017-03-17 Initial version

0.11 Jan Benadik (ATOS) 2017-04-03 Short description of possible tools added

0.12 Jan Benadik (ATOS) 2017-04-11 Some parts of environment description added

0.14 Jan Benadik (ATOS) 2017-06-09 Reworked structure, some details added.
minor text corrections

0.15 Jan Benadik (ATOS) 2017-06-19 Test definitions added, test tools added

0.16 Jan Benadik (ATOS) 2017-07-06 LinkSmart modules specifications added
SCRAL specifications added
OneM2M specifications added

0.17 Jan Benadik (ATOS) 2017-07-07 JMeter description added
SoapUI description added

0.18 Jan Badinsky (ATOS) 2017-07-12 Reworked structure

0.20 Robert Najsel (ATOS) 2017-07-12 Software quality added

0.21 Jan Badinsky (ATOS) 2017-07-14 IoT Testing added

0.22 Jan Benadik (ATOS) 2017-07-26 Version for first internal review

0.23 Jan Benadik (ATOS) 2017-08-14 Rewritten into new version of MONICA
deliverable template – no content changes

0.39 Jan Badinsky, Jan Benadik
(ATOS), Peeter Kool (CNET)

2017-08-31 Reworked based on review recommendations

1.0 Jan Benadik (ATOS) 2017-08-31 Final version submitted to the European
Commission

Internal review history:

Reviewed by Date Summary of comments

Arjen Schoneveld (DEXELS) 2017-08-31 Approved.

Dimitris Katsikas (CERTH) 2017-08-31 Approved. In my opinion in order to have a
complete integration plan the reviewer would
expect to see:

• The Backlog of the iterations in order
to prove that we do have a solid plan

• A simple Risk Plan (general and
related to pilots) with corresponding
mitigation actions

 D7.1 Test and Integration Plan

Document version: 1.0 Page 3 of 49 Submission date: 2017-08-31

Legal Notice

The information in this document is subject to change without notice.

The Members of the MONICA Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Members of the MONICA Consortium shall not be held liable for errors contained herein or direct,
indirect, special, incidental or consequential damages in connection with the furnishing, performance, or
use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects solely
the views of its authors. The European Commission is not liable for any use that may be made of the
information contained therein.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 4 of 49 Submission date: 2017-08-31

Index:
1 Executive Summary ... 5

2 Introduction .. 6
2.1 Purpose and context of this deliverable ... 6
2.2 Structure of this deliverable ... 6
2.3 List of Reference Documents .. 6
2.4 Glossary, Terminology, and Acronyms .. 7

3 Approach, Theory and Methodology ... 8
3.1 Continuous Integration ... 8

3.1.1 Introduction .. 8
3.1.2 CI Tools ..10

3.2 Testing ...13
3.2.1 Introduction ..13
3.2.2 Testing Tools ...14

3.3 Practices of Continuous Integration and Testing ...16

4 Actors and their integration activities in MONICA Project ..21

5 Integration and Testing ...23
5.1 Assumptions and Constraints ..23

5.1.1 Assumptions ..23
5.1.2 Constraints ...23
5.1.3 Exclusions ..23

5.2 Integration and Testing Strategy..23
5.2.1 Elements to be integrated ..25
5.2.2 External and Internal interfaces ...25
5.2.3 MONICA Sprints Schedule ..25

5.3 MONICA Integration and Test Plan ...27
5.3.1 Integration and Test Phases ..27
5.3.2 Test stages ..32
5.3.3 Ownership of the Integration and Test phases ..38
5.3.4 The phase entry and exit criteria ...38
5.3.5 Suspension and Restart Criteria ..41
5.3.6 Products output from the test process ...41
5.3.7 Responsibilities ..44

5.4 MONICA Continuous Integration Environment ..45
5.5 Test environments ...46
5.6 Test data ..46

6 Conclusion ..47

7 List of Figures and Tables ...48
7.1 Figures ...48
7.2 Tables ..48

8 References ..49

 D7.1 Test and Integration Plan

Document version: 1.0 Page 5 of 49 Submission date: 2017-08-31

1 Executive Summary

In the Integration part of the MONICA project, parts of the platform which are developed in the technical work
packages, shall be integrated into one MONICA cloud platform. In general, the integration serves for the
composition and concatenation of different components. In MONICA, parts of the platform which are developed
in the technical work packages WP4 – WP6, shall be integrated into one platform. An integration plan describes
how the different software modules, subsystems and systems will be integrated into a common prototype
platform.

The main output of this deliverable is to define a basis for an integration and testing platform for components
used, and application developed in defined work packages.

Main inputs to integration - outputs from definition and development in MONICA work packages:

• WP2 – Demand-side Requirements Engineering for Pilots, Architecture Specification

• WP4 – Acoustics Closed Loop Systems

• WP5 – Security Closed Loops Systems

• WP6 – Situational Awareness & Decision Support

The purpose of this document is to define the scope and approach of integration and testing to be performed
in collaboration with related partners of the MONICA consortium, including schedule of intended activities. It
identifies integration and test items, the features to be integrated and tested, the integration and testing tasks
as well as which role will perform which task.

The execution of the integration and testing plan will validate that the various system components interact and
pass data across each other as expected and function together cohesively. It focuses on the interface testing
in order to validate that the pieces of the system work together in a seamless way.

Testing will be implemented on different levels:

• Unit testing – Testing at the lowest level using a coverage tool. A unit is a piece of code that does not
call any subroutines or functions developed in the project.

• Integration testing – Testing of interfaces between components to ensure that they are compatible.

• System testing – Testing of the entire software system.

• Validation – Evaluation at the end of development to ensure requirements fulfilment.

In line with the AGILE approach to software development, integration should be performed incrementally and
continuously. By using Atlassian Jira as Agile Board, Git as Source Code Management System, SonarQube
as Quality of Code metrics and Jenkins as the Continuous Integration server, it will be ensured that all
developers have access to the latest versions of the code base, the quality of the code is on a desired level
and everything is well documented.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 6 of 49 Submission date: 2017-08-31

2 Introduction

The MONICA project aims to provide large-scale demonstrations of multiple existing and new Internet of
Things technologies, demonstrate seamless integration with other (i.e. Smart City) platforms through the
MONICA enabling toolbox based on Open Architectures and develop a toolbox of development tools and
technology enablers for entrepreneurs and developers in order for them to rapidly develop new IoT
applications.

The solution will be deployed and tested by six major cities in Europe during their cultural events in years
2018 – 2019:

• Tivoli/Friday Rock, Copenhagen (DK)

• KappaFutur Festival; The Movida, Torino (IT)

• Hamburger DOM; Port Anniversary, Hamburg (DE)

• Nuits Sonores; La Fête des Lumières, Lyon (FR)

• Rhein in Flammen ; Pützchens Markt, Bonn (DE)

• Cricket matches ; Rugby matches, Leeds (UK)

2.1 Purpose and context of this deliverable

One of the key principles of an agile process is doing everything in small steps but continuously. That is,
developing in small iterations, estimating small amounts of work and refactoring in small steps.
Every aspect of the development is continually revisited throughout the lifecycle.

The goal of D7.1 Test and Integration Plan deliverable is to ensure that various tools and components are
developed consistently and the final MONICA platform is well integrated. This document defines the basis for
the integration of components – applications developed and IoT hardware used in the MONICA project. It is
based on the current MONICA infrastructure definition (D2.2 The MONICA IoT Architecture Specification).

An integration and testing plan defined in this deliverable is for testing of the platform and its components
developed in the MONICA project. Integration and Testing is explicitly decoupled from the "development of
the other components". That is, development of each SW component (Decision Support System APPs,
Sound control APPs, Common Operation Picture APPs, visitor APPs, wristband tracking, etc.) follows its own
methodology. Many of them can be considered as “black boxes”, that will be integrated into the MONICA
system.

In this document, we are presenting an integrated test plan for WP4 – WP6 work packages, because of the
development of an integrated software platform where the outcomes of work packages interact with each
other. The software quality topic is an integral part of the integration strategy.

2.2 Structure of this deliverable

Chapter 3 discusses the Continuous Integration and Testing topics

Chapter 4 gives an overview of the whole MONICA consortium and the partner activity allocation

Chapter 5 describes the Integration Strategy and Plan

Chapter 6 describes the Test Strategy and Plan

2.3 List of Reference Documents

• D2.1 Scenarios and Use Cases for use of IoT Platforms in Event Management

• D2.2 The MONICA IoT Architecture Specification

 D7.1 Test and Integration Plan

Document version: 1.0 Page 7 of 49 Submission date: 2017-08-31

• D2.3 Initial Requirement Report

• OneM2M TS-0004-V2.7.1 Service Layer Core Protocol Specification:

o www.onem2m.org/images/files/deliverables/Release2/TS-
0004_Service_Layer_Core_Protocol_V2_7_1.zip

• OneM2M TS-0009-V2.6.1 HTTP Protocol Binding:

o http://www.onem2m.org/images/files/deliverables/Release2/TS-0009-
HTTP_Protocol_Binding-V2_6_1.pdf

2.4 Glossary, Terminology, and Acronyms

Term Definition

Functional testing Verify functional requirements implementation, stemming from use cases and

business rules

Integration Testing Verify target system interfacing and collaboration against other interacting systems.

Normally conducted under individual system-to-system interaction pairs.

Interface Testing Verify the correct implementation of each of the MONICA sub-systems against the

designated message specifications.

MONICA sub-systems provides and consumes functionalities with its interacting

systems

System Testing Verify system functional and non-functional requirements implementation

EC European Commission

N/A Not Applicable

SUB Subscription List

UAT User Acceptance Test

GE Generic Enabler

SAF11 Propagation model feed functionality of Situational Awareness System

SA, SAS Situational Awareness, Situational Awareness System

DSS Decision Support Service

FIWARE A generic, open standard platform

NGSI Next Generation Service Interface

OpenStack Open source software for creating private and public clouds

CSE Common Services Entity

NSCL Network Service Capabilities Layer

WSDL Web Services Description Language

SOAP Simple Object Access Protocol

UPnP Universal Plug and Play

… … can be extended …

 D7.1 Test and Integration Plan

Document version: 1.0 Page 8 of 49 Submission date: 2017-08-31

3 Approach, Theory and Methodology

3.1 Continuous Integration

3.1.1 Introduction

When starting a new project, a Continuous Integration should be adopted from the beginning of the project.
One of the first steps is to automate the building process, introduce automated testing into the building
process, identify the major areas where things go wrong and get automated tests to expose those failures.

Continuous Integration (CI) is a software development practice where members of a team integrate their
work frequently; usually each person integrates at least daily - leading to multiple integrations per day. Each
integration is verified by an automated build (including test) to detect integration errors as quickly as possible
(Fowler, 2006). Many teams find that this approach leads to significantly reduced integration problems and
allows a team to develop cohesive software more rapidly. CI is a popular practice in agile methodology. It
means the team should keep the system always fully integrated. Integration can happen many times a day.
Here the point is that CI detects enough bugs to be worth the cost. CI minimizes the time spent on searching
bugs and identifies compatibility issues very early.

Enterprises that have implemented agile processes have already seen great improvements both in cost &
stability and in the utility of the software. Continuous integration highlights the cultural shifts required to
become an agile enterprise. The key to building a culture that supports CI is to make sure that it works the
first time.

Continuous Integration takes some effort. If you are committed to AGILE, then it is not a luxury but a
necessity. The effort put into it will reflect in the quality of code, responsiveness of the team and in the
confidence of a job well done. But don’t get caught up with the word ‘continuous’. As integration occurs only
at certain intervals or when triggered by an event, CI is actually not continuous, but it means it always
happens routinely (Quotium, 2014).

Continuous Integration is associated with the concepts of eliminating waste and rapid feedback. Waste is
considered as something that doesn’t add value to customers. The process flow of the teams is depicted as
below (Figure 1). The planning and the architecture teams define the capabilities for the system to be
developed. The pre-planning period includes the technical planning, needs analysis, requirements
articulation and creation of the architecture framework. Inputs into this pre-planning phase include customer
needed capabilities and the output is a vision, roadmap, and architecture. During the pre-planning phase, the
planning team defines the scope and deliverables of the project, and the architecture team establishes the
vision, architecture, and a product backlog.

The output from the pre-planning phase flows into the first iteration. The architecture team updates the
capabilities backlog and prepares materials for the implementation team. These materials may include
requirements, capabilities, and user feedback. The architecture team may also work with the implementation
team to maintain the architecture as the detailed design evolves and assist developers in aligning the
product to the proposed requirements. The Integration and Test team implements the test environment. In
subsequent iterations, the finished product from all teams will be tested by the integration and test team to
verify the requirements both internally and with the customers (Larri Rosser, 2013).

 D7.1 Test and Integration Plan

Document version: 1.0 Page 9 of 49 Submission date: 2017-08-31

If any changes are required to the architecture, the architecture team revises the architecture in order to
support the upcoming capability development. This may include an architecture revision and a database
revision. Here the goal is to provide a modular systems architecture that is resilient to change. All iterations
will continue until the release is complete. The release is demonstrated to stakeholders & the planning team
for review and acceptance. Requested changes are planned into the next release. At the demonstration of
the final release, developers check whether the final software meets all requirements.

Figure 1: A Scalable Agile process iteration (Quotium, 2014)

3.1.1.1 Benefits of Continuous Integration

Continuous Integrations doesn't get rid of bugs, but it does make them dramatically easier to find and
remove (Fowler, 2006). Thus, projects with Continuous Integration tend to have less bugs, both in production
and during the development process. On top of CI is Continuous Deployment – aiming at minimizing lead
time, the time elapsed between development writing one new line of code and this new code being used by
live users in production. Frequent deployment is valuable because it allows your users to get new features
more rapidly, to give more rapid feedback on those features, and generally become more collaborative in the
development cycle. This helps break down the barriers between customers and development - which are the
biggest barriers to successful software development.

3.1.1.2 Building a Feature with Continuous Integration

A source code control system keeps all a project's source code in a repository. The current state of the
system is usually referred to as the 'mainline'. At any time, a developer can make a controlled copy of the
mainline onto their own machine, this is called 'checking out' [clone in Git]. The copy on the developer's
machine is called a 'working copy'. The developer takes his working copy and does whatever she/he should
do to complete his task. This will consist of both altering the production code and adding or changing
automated tests. Continuous Integration assumes a high degree of tests which are automated into the
software.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 10 of 49 Submission date: 2017-08-31

Once she/he is done (and usually at various points when she/he is working) she/he carries out an automated
build on her/his development machine. This takes the source code in his working copy, compiles, and links it
into an executable, and runs the automated tests. Only if it everything builds and tests without errors the
overall build is considered to be good. Once she/he has made his own build of a properly synchronized
working copy she/he can then finally commit (and pushes in case of Git) her/his changes into the mainline,
which then updates the repository.

However, this commit doesn't finish his work. At this point we build again, but this time on an integration
machine based on the mainline code. Only when this build succeeds we can say that her/his changes are
done. There is always a chance that she/he missed something on her/his machine and the repository wasn't
properly updated. Only when her/his committed changes build successfully on the integration is her/his job
done. Although the developer can manually execute an integration build, it is more valuable to do it
automatically by the CI Server.

If the source does not build, the integration build should fail. Either way the error is detected rapidly. At this
point the most important task is to fix it, and get the build working properly again. In a Continuous Integration
environment, you should never have a failed integration build stay failed for long. A good team should have
many correct builds a day. Bad builds do occur from time to time, but should be fixed quickly.

3.1.2 CI Tools

3.1.2.1 Source Control Management technologies

There is lot of Source Control Management technologies in place, many of them distributed under GNU Public
Licence. As typical example, Git, Mercurial, and Subversion can be used – for MONICA purpose we use Git.

3.1.2.1.1 Git

Git (GitLab, 2017) is a version control system (VCS) for tracking changes in computer files and coordinating
work on those files among multiple people. It is primarily used for software development, but it can be used
to keep track of changes in any files. As a distributed revision control system, it is aimed at speed, data
integrity, and support for distributed, non-linear workflows. As with most other distributed version control
systems, and unlike most client–server systems, every Git directory on every computer is a full-fledged
repository with complete history and full version tracking abilities, independent of network access or a central
server.

Git is free software distributed under the terms of the GNU General Public License version 2.

3.1.2.2 Source Control Management tools

There is lot of Source Control Management tools in place, many of them freely distributed as Open Source.
As an example, SCM-Manager, GitLab, and Atlassian Bitbucket can be used - for MONICA purpose we use
SCM-Manager.

3.1.2.2.1 SCM-Manager

SCM-Manager (SCM-Manager, 2017) is a central part of the virtual appliance SCM-Manager Universe. This
virtual machine for software development provides a ready to use infrastructure and automated workflows
with several features that speed up the development of software and reduce administrative duties. Out of the
box support for Git, Mercurial and Subversion.

SCM-Manager is licensed under the BSD-License.

3.1.2.3 Continuous Inspection of Code Quality

Code quality measurement and continuous improvement is not about reactively generating reports and making
plans to improve it. Instead of fixing quality issue when they already raise their heads in reports, it’s all about
proactively not let them happen at the very first place. Apart from quality plugins used with automated build,
IDE plugins and CI plugins help a lot in achieving the holistic agenda of clean code.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 11 of 49 Submission date: 2017-08-31

The benefits of finding and fixing defects early in the Software Development Lifecycle (SDLC) are widely
acknowledged. And these benefits are not limited to quality, but simultaneously have a positive impact on
schedule and cost.

There is a lot of different tools and methodologies in identifying and removing defects (Defect Removal
Efficiency (DFE)) at the different stages in the SDLC. One of the widely used is SonarQube, which we consider
to use for MONICA project development.

3.1.2.3.1 SonarQube

SonarQube (SonarQube, 2017) is an open source platform for continuous inspection of code quality.

It supports languages:

• Java (including Android)
• C/C++, Objective-C, C#
• PHP
• Flex
• Groovy
• JavaScript
• Python
• PL/SQL
• COBOL
• Swift
• etc…

(some of them are commercial).

Offers reports on duplicated code, coding standards, unit tests, code coverage, code complexity, comments,
bugs, and security vulnerabilities. Records metrics history and provides evolution graphs.

Provides fully automated analysis / integrates with:

• Maven
• Ant
• Gradle
• MSBuild
• Atlassian Bamboo
• Jenkins / Hudson
• etc...

Is expandable with the use of plugins. Integrates with development environments through the SonarLint
plugins:

• Eclipse
• Visual Studio
• IntelliJ IDEA

3.1.2.4 Continuous Integration Software

3.1.2.4.1 Jenkins / Hudson

Jenkins (Vogella, 2017) is an open source automation server written in Java. The project was forked from
Hudson after a dispute with Oracle. On February 1, 2011, Oracle said that they intended to continue
development of Hudson, and considered Jenkins a fork rather than a rename. Jenkins and Hudson therefore
continue as two independent projects, each claiming the other is the fork. As an extensible automation
server, Jenkins can be used as a simple CI server or turned into the continuous delivery hub for any project.

Jenkins is one open source tool to perform continuous integration and build automation. The basic
functionality of Jenkins is to execute a predefined list of steps. The trigger for this execution can be time or
event based. For example, every 20 minutes or after a new commit in a Git repository.

Jenkins monitors the execution of the steps and allows to stop the process if one of the steps fails, it can
send out a notification about the build success or failure. Jenkins helps to automate the non-human part of
the whole software development process, with now common things like continuous integration, but by further

 D7.1 Test and Integration Plan

Document version: 1.0 Page 12 of 49 Submission date: 2017-08-31

empowering teams to implement the technical part of a Continuous Delivery. It is a server-based system
running in a servlet container such as Apache Tomcat. It supports SCM tools including AccuRev, CVS,
Subversion, Git, Mercurial, Perforce, Clearcase and RTC, and can execute Apache Ant, Apache Maven and
sbt based projects as well as arbitrary shell scripts and Windows batch commands.

Jenkins functionality can be extended with plugins. Plugins have been released for Jenkins that extend its
use to projects written in languages other than Java. Plugins are available for integrating Jenkins with most
version control systems and big databases. Many build tools are supported via their plugins. Plugins can
also change the way Jenkins looks or add new functionality. There are a set of plugins dedicated for unit
testing that generate test reports in various formats (for example JUnit bundled with Jenkins, MSTest, NUnit
etc.) and automated testing which supports automated tests. Builds can generate test reports in various
formats supported by plugins (JUnit support is currently bundled) and Jenkins can display the reports and
generate trends and render them in the GUI.

Released under the MIT License, Jenkins is free software.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 13 of 49 Submission date: 2017-08-31

3.2 Testing

3.2.1 Introduction

Testing is primarily a risk mitigation function. In short, the role of testing is to advise the program on the
quality risks in the delivery, seeking to mitigate the greatest risks as early as possible and to provide
information on the residual risks such that a rational judgement between cost, time, and quality of the
delivery can be taken.

Testing is defined by the International Software Testing Qualifications Board (ISTQB) as ‘The process
consisting of all life cycle activities, both static and dynamic, concerned with planning, preparation and
evaluation of software products and related work products to determine that they satisfy specified
requirements, to demonstrate that they are fit for purpose and to detect defects.’ Testing terminology is
defined by ISTQB Standard Glossary of Terms used in Software Testing (see http://istqb.org).

Testing policy:

• Developers should perform Unit tests to verify the software units against the detailed design
specifications as standard.

• Separate system test and acceptance test phases should be planned and executed as a minimum.
All tests should be planned, repeatable and auditable (i.e. test execution log maintained).
Unscripted, but still planned and repeatable, Exploratory Testing is also of value but must be
supplementary to the main body of scripted testing.

• Automate testing where appropriate. Aim for a balance between automated and manual tests.
Consider automating regression testing where practical return on investment can be achieved, taking
account of total contract life, including support.

• Testing for security risk mitigation should be considered during build, initial delivery and regularly
during operational use i.e. after infrastructure changes and patch releases.

• Test activities must be monitored to ensure they are proceeding to plan.
• Testing occurs throughout the project lifecycle from inception (reviews) through to production

(monitoring). It is the responsibility of the developers, builders, operators, and the test specialists to
mitigate quality risks in all their activities.

• Defects found during any testing must be recorded, classified, and actioned appropriately. Root-
cause analysis should be undertaken, to both benefit future phases of the project and inform and
improve projects in the future.

• Test metrics shall be collected throughout the development and production lifecycle. The metrics
collected shall be used to inform subsequent test phases, system releases and projects of the test
effort and duration required to achieve a desired quality target measured by residual defects
discovered in subsequent tests or operation use.

The Test Strategy is not expected to be updated frequently. It should be defined at a level where it is
impervious to changes in plan dates, resources, and detail requirement changes. However, since the Test
Strategy is risk based then changes in any content that impacts the risk analysis may require a
reassessment of the Test Strategy.

Reviewers of the Test Strategy shall look for adequate coverage of all the topics identified in the template
sufficient to ensure efficient and effective guidance for Test Plans and other test collateral.

3.2.1.1 Test Types

• Unit and component test - To verify the software component against the lowest level of
documentation defining that component e.g. detailed design specifications. Unit testing focuses on
verifying the smallest testable elements of MONICA, namely by testing individual development
objects (e.g. individual units of source code) as they are developed during the component build.
More specifically, unit testing is performed at the low-level architectural layers.

o Unit testing is considered part of the development activities and it therefore is assumed that
unit testing has been successfully executed by the development team before executing a
test campaign on a candidate release.

• Component integration test - Supplier Component Integration Testing verifies that all the
components of the supplier solution can interface to and interact correctly with all other components
provided by the supplier according to the contractual solution specification documents produced by

 D7.1 Test and Integration Plan

Document version: 1.0 Page 14 of 49 Submission date: 2017-08-31

the supplier (e.g. functional designs, system specifications). Depending on the nature of the
supplier’s solution and how completely it fulfils the business requirement, it may be possible to verify
some of the business requirements in this test phase. If this can be done it is to be encouraged to
detect significant business risks earlier, and fix them with less effort than waiting for later test phases
to detect the fault.

• System integration test - System Integration Testing verifies that the delivered systems interface with
each other and external organizations/systems as expected. Integration testing aims at confirming
that the integration between MONICA Cloud Platform and the other MONICA components external
to MONICA Cloud Platform DIGIT (local on-premise deployed) is working as required. This includes
the testing of all interfaces including interface logic, interface transmission, and target system
processing.

• System test - System Testing verifies that the delivered systems interoperate with each other as
expected in the execution of the overall end to end business processes. The testing covers
functional and non-functional testing. The risk assessment shall determine the appropriate amount of
regression testing to verify that unchanged parts of the system continue to behave as expected.

• User acceptance test - User Acceptance Testing (UAT) is a formal test that proves to the end user
that the delivered system is fit for their purpose. The risk assessment shall determine the appropriate
amount of regression testing to verify that unchanged parts of the system continue to behave as
expected and the existing user expectations can be met. Different types of tests should be
performed in the frame of Acceptance Testing:

o Security testing, to assess data and application configuration protection.
o Performance testing, to assess time sensitive requirements.
o Stability testing, to assess workload sensitive requirements.
o Stress testing, to bring out malfunctions due to lack of (or competition for) resources.
o Volume testing, to assess the ability to endure workloads during a defined period.
o Business cycle testing, to ensure the proper functioning of the system over time.
o Regression Testing, to verify that all functions work properly after code changes.

The responsibility of the testing preparation and execution of these recommended testing type

will be specified by the RACI Matrix in 5.3.7.1. The UAT stage will use many of the testing tools and
scripts created in the previous stages, particularly the ones used for the system testing and the
integration testing, with a special focus on the business processes that are the most common and
prone to be used most frequently (not all business processes of system testing and integration
testing are tested within a UAT).

3.2.2 Testing Tools

3.2.2.1 Junit

JUnit 5 (Junit, 2017) is composed of several different modules from three different sub-projects:

JUnit Platform + JUnit Jupiter + JUnit Vintage

• Junit platform serves as a foundation for launching testing frameworks on the JVM. It also defines
the TestEngine API for developing a testing framework that runs on the platform. Furthermore, the
platform provides a Console Launcher to launch the platform from the command line and build
plugins for Gradle and Maven as well as a JUnit 4 based Runner for running any TestEngine on the
platform.

• JUnit Jupiter is the combination of the new programming model and extension model for writing
tests and extensions in JUnit 5. The Jupiter sub-project provides a TestEngine for running Jupiter
based tests on the platform.

• JUnit Vintage provides a TestEngine for running JUnit 3 and JUnit 4 based tests on the platform.

One of the prominent goals of JUnit 5 is to make the interface between JUnit and its programmatic clients –
build tools and IDEs – more powerful and stable. The purpose is to decouple the internals of discovering and
executing tests from all the filtering and configuration that’s necessary from the outside.

JUnit 5 introduces the concept of a Launcher that can be used to discover, filter, and execute tests.
Moreover, third party test libraries – like Spock, Cucumber, and FitNesse – can plug into the JUnit Platform’s

 D7.1 Test and Integration Plan

Document version: 1.0 Page 15 of 49 Submission date: 2017-08-31

launching infrastructure by providing a custom TestEngine. A TestEngine facilitates discovery and execution
of tests for a particular programming model. For example, JUnit provides a TestEngine that discovers and
executes tests written using the JUnit Jupiter programming model.

The ConsoleLauncher is a command-line Java application that lets you launch the JUnit Platform from the
console. For example, it can be used to run JUnit Vintage and JUnit Jupiter tests and print test execution
results to the console.

3.2.2.2 SoapUI, JMeter, FusionCharts

SoapUI (SoapUI, 2017) is the world's leading Functional Testing tool for SOAP and Web Service testing.
With its easy-to-use graphical interface, and enterprise-class features, SoapUI allows to easily and rapidly
create and execute automated functional, regression, and load tests. In a single test environment, SoapUI
provides complete test coverage - from SOAP and REST-based Web services, to JMS enterprise messaging
layers, databases, Rich Internet Applications, automated Functional and Regression Testing. Powerful and
innovative features help to validate and improve the quality of services and applications.

The Apache JMeter™ (JMeter, 2017) application is open source software, a 100% pure Java application
designed to load test functional behaviour and measure performance. It was originally designed for testing
Web Applications but has since expanded to other test functions.

Apache JMeter may be used to test performance both on static and dynamic resources, Web dynamic
applications. It can be used to simulate a heavy load on a server, group of servers, network or object to test
its strength or to analyse overall performance under different load types.

Apache JMeter features include:

• Ability to load and performance test many different applications/server/protocol types:
o Web - HTTP, HTTPS (Java, NodeJS, PHP, ASP.NET, …)
o SOAP / REST Webservices
o FTP
o Database via JDBC
o LDAP
o Message-oriented middleware (MOM) via JMS
o Mail - SMTP(S), POP3(S) and IMAP(S)
o Native commands or shell scripts
o TCP
o Java Objects

• Full featured Test IDE that allows fast Test Plan recording (from Browsers or native applications),
building and debugging.

• Command-line mode (Non-GUI / headless mode) to load test from any Java compatible OS (Linux,
Windows, Mac OSX, …)

• A complete and ready to present dynamic HTML report
• Easy correlation through ability to extract data from most popular response formats, HTML, JSON,

XML or any textual format
• Complete portability and 100% Java purity.
• Full multi-threading framework allows concurrent sampling by many threads and simultaneous

sampling of different functions by separate thread groups.
• Caching and offline analysis/replaying of test results.
• Highly Extensible core:

o Pluggable Samplers allow unlimited testing capabilities.
o Scriptable Samplers (JSR223-compatible languages like Groovy and BeanShell)
o Several load statistics may be chosen with pluggable timers.
o Data analysis and visualization plugins allow great extensibility as well as personalization.
o Functions can be used to provide dynamic input to a test or provide data manipulation.
o Easy Continuous Integration through 3rd party Open Source libraries for Jenkins

FusionCharts (FusionCharts, 2017) Suite brings events and methods for deep integration with other
libraries and web-frameworks. It gives complete control over each step of the charting process, and equips
to build the most advanced dashboards for enterprise applications.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 16 of 49 Submission date: 2017-08-31

3.3 Practices of Continuous Integration and Testing

(Subsections definition – Fowler, 2006)
Maintain a Single Source Repository
Software projects contain many components that need to be co-ordinarily arranged to create a product.
Preserving this information when multiple people are involved is a major effort. Therefore, software
development teams should develop tools to handle all these issues over the course of the year. These tools -
called source code management tools, configuration management, version control systems, repositories, or
various other names - are an integral part of most development projects. Costs are not a problem because
there are good quality open-source tools available. Once you have a source code management system,
make sure that it is a well-known place for everyone. Everything should be in the repository (including test
scripts, properties, database schemas, installation/deployment scripts, third-party libraries). The basic rule is
that any developer can start a on a project, perform a check-out (clone), and build the system. Only a small
number of things should be on virgin machines - usually things that are big, complicated to install and stable.
Typically - an operating system, the Java development environment or the database system. IDE
configurations are good to place there because people simply share the same IDE settings.

In general - you should store in source control everything you cannot build, but nothing that is a result of the
build.

Source Code Quality
There are many ways that static code analysis can help speed up software delivery. It can pick up, as a
preliminary to check-in, errors and weaknesses in code that can happen incidentally to even the most
experienced developer. It can give the team a measure of „technical debt” (mess in a software code due to
implementing new functionality without design redefinition), and remove the obvious “technical noise” (an
unnecessary artefacts) from code before it is reviewed.

ISO/IEC 9126 (ISO/IEC 9126) defines a model for software product quality that categorizes software quality
attributes into six characteristics:

• Functionality: is the essential purpose of any product or service;

• Reliability: express the ability of the component to maintain a specified level of performance, when used
under specified conditions;

• Usability: only exists regarding functionality and refers to the ease of use for a given function;

• Efficiency: is concerned with the system resources used when providing the required functionality;

• Maintainability: the ability to identify and fix a fault within a software

• Portability: refers to how well the software can adopt to changes in its environment or with its
requirements.

The quality of the code has major impact on the quality characteristic Maintainability.

Figure 2: Metrics to measure the quality of the code (focused on Java / C#)

Table 1: Standard targets for Code Metrics

Metric Target Motivation
Size No explicit target. Recommendation is to

divide big projects in loosely coupled
modules.

Size of code base is derived from other metrics:
amount of function points and the complexity of the
requirements.

Comments Density of public documented API: 100%
Density of comment lines > 20%

Public APIs define how the code is used in its
environment. It is essential information for other
programmer to understand the purpose of a class or
a method. A certain amount of inline documentation

 D7.1 Test and Integration Plan

Document version: 1.0 Page 17 of 49 Submission date: 2017-08-31

helps maintainability. A minimum of 20% is a
reasonable target.

Duplication Density of duplicated lines < 10 % A target of 10% duplication is reasonable.

Complexity Nr. of Methods with complexity > 20: 0
Methods with complexity < 11: 80% of all
methods (or higher)
Average complexity by method < 3

Complexity is a major factor in maintainability. The
first two metrics are most important. The average
complexity target should be seen as a good
indicator.

Violations Nr. of Major/Blocker/Critical violations: 0
Rules Compliancy > 98%

If there are no major, blocker or critical violations
than the target of 98% is easily achieved.

Testing Coverage of business components: 80% Test coverage is important for maintainability. A
coverage of 80% seems to become an industry
standard. Note that the target does not affect UI
components

Design Package cycles: 0 The design of packages should be proper.

Table 2: Recommended process guidelines and tools

Step Delivery manager Technical Architect Software Developer
Project Start Check customer requirements

for code quality,
Check for external audit
requirements,
Define coding standards and
priorities (MAJOR, MINOR,
etc.),
Tailor targets for all metrics

 Define tailored targets in
project plan,
Define and plan audits in
project plan

Develop code Follow guidelines for good code
quality

Self-review Check code for measurements
on basic metrics (complexity,
duplication, coverage, …)

Code review Check measurements on
dashboard

Periodic review Check dashboard weekly

As for recommended tooling, SonarQube will be used for continuous inspection and evaluation of source
code quality. Sonar provides a dashboard for a quick inspection. For a detailed inspection, the source code
can be viewed directly in sonar. Measurements are available at the level of project, package, and class.
There are also graphical charts available to show the progress over a time period:

 D7.1 Test and Integration Plan

Document version: 1.0 Page 18 of 49 Submission date: 2017-08-31

Figure 3: Sonar Dashboard

Automate the Build
The common mistake of automated environments is not to include everything in an automatic assembly. The
Build should include obtaining a database schema from a repository and firing it in a production environment
- anyone should be able to bring in a virgin computer, check the sources from the repository, enter a single
command, and have a running system on it.

Large build often takes time - in the case of minor changes, it is not necessary to do all of these steps. So a
good build tool - as part of the process - analyses what should be changed. The common way to do this is to
check the dates of the source and object files and compile them only if the source date is later.
Dependencies may be complex - if one object file changes, the object that depend on it can also be rebuilt.
Compilers can handle these things or they may not. Depending on what you need, different kinds of things
may be needed. It is possible to create a system with or without test code or with different series of tests.
Some components can be built stand-alone. A build script should allow developers to build alternative
targets for different cases (Fowler, 2006).

Make Your Build Self-Testing
A good way to capture errors faster and more efficiently is to include automated tests into the build process.
In the case of a self-testing code, a set of automated tests is required to check for a large part of code for
bugs. The tests should be possible to start with a simple command and to be self-checking. The result of
testing should indicate whether the tests failed, and the failure of the test should cause the build to fail. Of
course, it is not possible to rely on tests to reveal everything. But imperfect tests - if runs frequently - are
better than perfect tests that do not exist.

Everyone Commits to the Mainline Every Day
Integration allows developers to tell other developers about the changes they have made. Frequent
communication allows people to know quickly as changes develop. Integration is primarily about
communication.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 19 of 49 Submission date: 2017-08-31

As with any commit cycle the developer first updates their working copy to match the mainline, resolves any
conflicts with the mainline, then builds on their local machine. If the build passes, they are free to commit to
the mainline. General rule of thumb is - every developer should commit to the repository every day. In
practice, it's often useful if developers commit more frequently than that. The more frequently you commit,
the less places you should look for conflict errors, and the more rapidly you fix conflicts. Frequent commits
encourage developers to break down their work into small chunks of a few hours each. This helps track
progress and provides a sense of progress.

Every Commit Should Build the Mainline on an Integration Machine
Using day-to-day commitments, the team receives often tested builds. In practice, however, the things are
getting worse, because of several reasons. One reason is environmental differences between developers'
machines. Another is discipline - people do not update and build before they commit. Therefore, you should
ensure that integration build is done only on the integration machine and only if the integration is successful,
the commitment is confirmed. The developer is responsible for her/his commits, so she/he should monitor
the mainline build to fix it if it breaks. As a result, work should not be interrupted until the mainline has been
successfully completed with all the commits that have been added in that day.

There are two main ways to ensure this: using a manual build or a continuous integration server.

The manual build approach - it's a similar thing to a local build that a developer does before she/he commits
into the repository. The developer checks out the head of the mainline on the integration machine (which
now has her/his last commit) and begins integration build. She/he observes its progress and, if the build
succeeds, it has made its commit.

A continuous integration approach is automated. The CI server acts as a monitor in the repository. Every
time a commit to the repository occurs, the server automatically checks out the sources onto the integration
machine, initiates the build, and reports the result of the build to the committer. The commit does not confirm
until committer receives a positive notification (usually an email).

Fix Broken Builds Immediately
The whole point of working with CI is that developers are always developing on a known stable base. When
the mainline build does break, it's important that it gets fixed fast. Often the fastest way to fix the build is to
reverse the latest commit from the mainline, taking the system back to the last-known good build.

Keep the Build Fast
The most important step is to start working on build a pipeline. Because - in fact the sequence of several
builds is executed. The commit to the mainline triggers the first build - a commit build. This commit build to
the mainline should be done quickly. Therefore, it will take several shortcuts that will reduce the ability to
detect bugs. The main topic is to find a balance between the needs to find bug and speed so that a good
commit build is stable enough for other people to work on. If the commit build is good, then other people can
work on the code with no doubt. Additional machines may run further testing routines on the build taken
more time.

In the first phase the team uses a commit build as main CI cycle. The second phase is triggered when
possible by picking up the executable file from the latest good commit build for further testing. If this
secondary build fails, it means that it does not have sufficient quality, and the team must fix bugs as quickly
as possible to keep commit build running. If a secondary build detects a bug, it is a sign that commit build
can work with another test. This is an example of a two-stage pipeline, but the basic principle can be
extended to any number of stages. These builds (after the commit build) can be done in parallel as well.
Using parallel secondary builds you can deploy all further automated tests including performance testing into
the standard build process.

Test in a Clone of the Production Environment
The purpose of testing is to prevent/solve - under controlled conditions - any problems that the system may
have in production, but there are certain limits. For example, duplicating some production environments can
be disproportionately expensive. Despite these limitations, the goal should be to run tests on as much
duplicate environments as you can, to understand the risks and accept the differences between the test and
the production environment.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 20 of 49 Submission date: 2017-08-31

Virtualized machines can be saved with all the necessary elements that are embedded in virtualization. Then
it is relatively easy to install the latest build and run tests. Additionally, developers can run multiple tests on
one machine or simulate multiple computers on a network on the same physical machine. The containers as
an alternative approach can be used as well.

Make it Easy for Anyone to Get the Latest Executable
One of the most difficult parts of software development is making sure that developers build the right
software. It's very hard to specify what you want in advance and people find it much easier to see something
that's not quite right and say how it should be changed.

Everyone can see what's happening
Continuous Integration is all about communication, so you want to ensure that everyone can easily see the
state of the system and the changes that have been made to it (Fowler, 2006). One of the most important
things to communicate is the state of the mainline build. CI servers' web pages can carry more information
than this.

Automate Deployment
To do Continuous Integration multiple environments are needed - one to run commit tests, one or more to
run secondary tests. Since executables are moving between these environments multiple times a day, it’s
mandatory to do this automatically, so it's important to have scripts to deploy the application into any
environment easily.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 21 of 49 Submission date: 2017-08-31

4 Actors and their integration activities in MONICA Project

Table 3: Actors and their integration activities in MONICA Project

Actor Integration activities IoT
devices

Integrated modules

FIT Linksmart deployment support
Development of the Geofencing module
Pilots deployment support

 Linksmart (with CNET)
Geofencing module

ACOU Responsible for running Lyon
demonstrations

ATOS Components and Cloud integration

B&K Sound level meters and GW development
and delivery

Microphone
sensors

Sound Level Meter GW

BONN Responsible for running Bonn
demonstrations

CERTH Situational awareness and decision support
module development

 Situational awareness
and decision support

CNET Linksmart Deployment support
Consumers apps and User Interfaces
development
Situational awareness and decision support
modules (DSS, COP, Guard) development

 Linksmart (with FIT)
Decision Support System
Common Operational
Picture
Open Air Event App
Services
MONICA APIs

DEXELS Testing – the Use Case Definitions
Wristbands and Wristbands GE delivery

Wristbands Wristbands GW

DIGISKY Delivery of Drones and Airships
Install of UWB wireless communication
infrastructure

Drones,
Airships
with
cameras
and
sensors

UWB wireless
communication
infrastructure

DTU Sound zone system development and
deployment support

 Sound Field Control Loop

FHH-SC Responsible for running Hamburg
demonstrations

HAW Support for running Hamburg
demonstrations
Validation and engagement of the Open
Data widgets
Implementing of the wireless network
(Hamburg)
Delivery of Sound and Env. Sensors

Sound and
environmen
tal sensors

HWC Securing of the IoT Network infrastructure
Integration of Communication Network and
Cyber Security Framework

 Cyber Security, Privacy
and Trust Framework

IN-JET Pilots coordination, validation and evaluation

ISMB SCRAL deployment support
Situational awareness system deployment
support

 SCRAL
Situational Awareness

KK Support for Copenhagen Pilot

KU Security closed loop application development
and deployment support

 Security Fusion Node

LBU Support for Leeds Pilot

MOVE Support for Torino Pilot

OPTIN Delivery of the intelligent eyewear Intelligent
eyewear

 D7.1 Test and Integration Plan

Document version: 1.0 Page 22 of 49 Submission date: 2017-08-31

PSG

RING

TIVOLI Responsible for running Copenhagen Pilot

TIM Delivery of the OneM2M platform OneM2M GW and NSCL

TO Responsible for running Torino Pilot

VCA Surveillance applications development Cameras Surveillance applications

VH-SJ

YCCC Responsible for Leeds Pilot

 D7.1 Test and Integration Plan

Document version: 1.0 Page 23 of 49 Submission date: 2017-08-31

5 Integration and Testing

5.1 Assumptions and Constraints

5.1.1 Assumptions

• No native applications for desktop will be developed, only applications with Web UI
• Web UI compatibility of the applications will be tested against the following browsers:

o Internet Explorer
o Mozilla Firefox
o Google Chrome

 on OS’s:
o MS Windows
o Linux
o Android
o IOS

• The native mobile applications will be built for Android as primary platform and IOS as secondary
platform afterwards

• The acceptable technologies (C++, C#, html, JavaScript, Python, Java, Docker) and software
licenses (GPL, LGPL, MIT, BSD, etc.)

• All documents will be in English
• starting full-length tests in early sprints, even if most of the functionality on both sides of the

integration must be mocked out
o As functionality is added, either sprint-by-sprint or at pre-arranged milestones, the tests can

be switched to use the real thing

5.1.2 Constraints

• Weekly team lead meetings are helpful to catch big items, but informal relationships are invaluable
for catching semantic differences and focusing on the goal of combined success

• From the early stage, some parts for integration must be simulated

5.1.3 Exclusions

The component development teams and/or component owners are responsible to test and verify the
expected functionality of their components, prior any integration testing is conducted

The integration and test plan will not address the following activities:

• Unit testing is under module developer responsibility, excluded from the integration testing
• Completeness and quality of testing data provided
• Hosting hardware, network solution installation, middleware
• Application resources encapsulated by network infrastructure and upon the supporting middleware,

and availability of such resources prior any testing session under the target testing environment
• Idle time between two releases or iterations
• Waiting for clarification, inputs
• Change Request received after the completion of the Handover checklist

5.2 Integration and Testing Strategy

Integration is the process of combining software components, hardware components, or both into an overall
system. (IEEE Std 610.12, 1990).

The purpose of Integration and Testing Strategy and Plan is to describe how to assemble the product from
the product components and ensure that the assembled product operates properly.

Integration Testing is performed to validate that the various system components interact and pass data
across each other as expected and function together cohesively. To accomplish this objective, the MONICA

 D7.1 Test and Integration Plan

Document version: 1.0 Page 24 of 49 Submission date: 2017-08-31

integration team has identified the requirements that are in scope for Integration Testing, which items are out
of scope, and the testing activities that will be performed.

The overall testing mission is to verify the correct implementation of the specifications of the MONICA
components, as well as, the MONICA platform interconnection and expected information exchange with the
systems out of MONICA world (Open Data). One of the testing missions is to guarantee the interoperability
aspects of the infrastructure at legal, organizational, semantic, and technical levels. To achieve this, this
mission incorporates multiple concerns including:

• find as many bugs as possible
• find important problems, assess perceived quality risks
• advise on perceived project risks
• verify a specification (requirements, design, or claims)
• advise on product quality, satisfy stakeholders
• advise on testing

The integration of the MONICA platform will follow principles described in chapter 3.1 Continuous
Integration. Because of the integration happens frequently, the individual extensions and modifications need
to be small. The short work cycles require use of an automated methods for source code management,
configuration and testing.

Integration, in the case of MONICA, can be considered “development" if integration means integrating all
these components to work together. Some components, like DSS really form an “integral” part of the system,
these components follow the same methodology as integration. Components that are black boxes, i.e.
are/can be used outside of MONICA as well, can follow their own methodology and only their timely
availability is important and should follow from the sprint schedule.

Looking at the dynamics of the events that will be using the "MONICA system”, not all events will require all
functionality and after the event there will be a lot of feedback. Basically, each event acts as a prototype
deployment. The prototype will be evaluated; changes will be made and the next event will use the new
prototype. The methodology reflects the dynamics of this discrete operation (during each pilot).

 D7.1 Test and Integration Plan

Document version: 1.0 Page 25 of 49 Submission date: 2017-08-31

5.2.1 Elements to be integrated

The components to integrate based on an actual state of MONICA architecture definition:

Figure 4: MONICA IoT Architecture

For more details see the document D2.2 The MONICA IoT Architecture Specification.

5.2.2 External and Internal interfaces

List of Interfaces will be updated on the basis of D2.2 The MONICA IoT Architecture Specification.

5.2.3 MONICA Sprints Schedule

The development of the individual MONICA components, or the specific functionalities will be organized into
sprints. The Sprints schedule and stories assignment to the specific sprint will be organized by product owner
(ISMB). Sprints duration are set to period of one calendar month.

Sprints schedule timeframe falling to specific Releases:

Item Date / Period

Pilot Demo Release M9

MONICA sprint 1 (M9 DEMO) 25/July - 30/Aug/2017

Annual Platform Deployment 1 Initial release - SCRAL, Linksmart,
OneM2M integration

M10

MONICA sprint 2 1/Sept – 30/Sept/2017

Prototype release 1 - Crowd & capacity monitoring, Access control,
Security incidents

M12

 D7.1 Test and Integration Plan

Document version: 1.0 Page 26 of 49 Submission date: 2017-08-31

MONICA sprint 3 1/Oct – 31/Oct/2017

MONICA sprint 4 1/Nov – 30/Nov/2017

Pilot platform Beta release - Health incidents, Technical incidents,
Missing person
(Hamburger DOM Beta Release; Rugby Match Beta Release)

M15

MONICA sprint 5 1/Dec – 31/Dec/2017

MONICA sprint 6 1/Jan – 31/Jan/2018

MONICA sprint 7 1/Feb – 28/Feb/2018

Pilot platform RC1 release - Sound control loop, Evacuation
(Port Anniversary; Rhein in Flammen; Tivoli/Friday’s Rock; Nuits
Sonores)

M17

MONICA sprint 8 1/Mar – 31/Mar/2018

MONICA sprint 9 1/Apr – 30/Apr/2018

Annual Platform Deployment 2 M18

MONICA sprint 10 1/May – 31/May/2018

Pilot platform RC2 release
(KappaFutur Festival, Hamburger DOM)

M19

MONICA sprint 11 1/June – 30/June/2018

Pilot platform RC3 release
(Pützchens Markt; Movida)

M21

MONICA sprint 12 1/July – 31/July/2018

MONICA sprint 13 1/Aug – 30/Aug/2018

Pilot platform RC4 release
(Hamburger DOM)

M23

MONICA sprint 14 1/Sept – 30/Sept/2018

MONICA sprint 15 1/Oct– 31/Oct/2018

Prototype release 2 - Event information, Offences, Traffic
Pilot platform RC5 release
(Fête des Lumières)

M24

MONICA sprint 16 1/Nov – 30/Nov/2018

Pilot platform RC6 release
(Hamburger DOM; Rugby Match)

M27

MONICA sprint 17 1/Dec– 31/Dec/2018

MONICA sprint 18 1/Jan – 31/Jan/2019

MONICA sprint 19 1/Feb – 28/Feb/2019

Pilot platform RC7 release
(Port Anniversary; Rhein in Flammen; Tivoli/Friday’s Rock; Nuits
Sonores)

M29

MONICA sprint 20 1/Mar – 31/Mar/2019

MONICA sprint 21 1/Apr – 30/Apr/2019

Annual Platform Deployment 3
Pilot platform Prerelease1
(KappaFutur Festival, Hamburger DOM)

M30

MONICA sprint 22 1/May – 31/May/2019

Pilot platform Prerelease2 - Complaints
(Pützchens Markt; Movida)

M33

MONICA sprint 23 1/June– 30/June/2019

MONICA sprint 24 1/July – 31/July/2019

MONICA sprint 25 1/Aug – 31/Aug/2019

Pilot platform Prerelease3
(Hamburger DOM; Fête des Lumières)

M34

 D7.1 Test and Integration Plan

Document version: 1.0 Page 27 of 49 Submission date: 2017-08-31

MONICA sprint 26 1/Sept – 30/Sept/2019

MONICA sprint 27 1/Oct – 31/Oct/2019

Final Release M36

MONICA sprint 28 1/Nov – 30/Nov/2019

5.3 MONICA Integration and Test Plan

This chapter describes an outline of the release process of separate components for the purpose of an
integration and testing of the MONICA prototype platform. The following chapter describes the stages of the
integration process.

Figure 5: The Integration Process Stages

5.3.1 Integration and Test Phases

A release cycle for the integration process will be based on the basis of sprints schedule, for details see 5.2.3.
There is not mandatory to release all components/subcomponents at the end of each release cycle, only
components with relevant incremental functionality are mandatory. The main precondition of release is the
functionality and usability of components/subcomponents.

At the beginning of the release cycle, every development team participating in the project should commit
source code for the specific release to the Central Source Code Repository. The code for the specific release
should be stable and unit tested. The Source Code Quality check, Build/Packaging and Deploy/Configuration
phases follows, and after these, an Integration and System testing will be realized.

At the end of the release cycle, the validation of product functionality will be held. For the Annual
demonstrations (in contrast with the Pilot demonstrations), it will also contain an Approval of Technical
manager, and Pilot coordinator at the end of cycle.

5.3.1.1 Development Phase

This phase does not belong to the integration process, in the true sense of word. It is carried out by an individual
development teams. But it is necessary to mention this phase, because it is a fundamental precondition for the
whole integration process.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 28 of 49 Submission date: 2017-08-31

Components/subcomponents will be continuously developed on partner’s development environments. All
partners are obliged to commit their source codes to the Central Source Code (SC) Repository, according to
the Sprints schedule, for details see 5.2.3.

• Preconditions: commit to the Central SC Repository after internal Unit tests / Quality checks
• Output: tested source code, prepared for build of a functional and usable component
• Schedule: at least once per release cycle (AD-HOC)

5.3.1.2 Unit Testing

Unit (stand-alone) testing is a precondition, but not the phase of MONICA Integration Testing process. The
objective of this stage is to ensure that individual MONICA components / modules are functional, usable and
compile able. For integration purposes, the main emphasis in this face should be laid upon interface testing,
i.e. compliance of each of the MONICA component against the designated message specifications.
Unit testing will safeguard that the individual MONICA components are well implemented and stable enough
to start integration testing.

In this context, integration / testing would like to introduce a streamlined, uniform and consistent way for the
Unit Testing stage.

For this purpose, the team will:

• Define a set of common test case specifications that must be successfully executed by each of
integrated MONICA component / module. The common test case specifications will focus particularly
on the System-Wide Functional Requirements. The definition and execution of test cases for the
System Qualities and Security Requirements will remain under the responsibility of Component
Developer.

• Facilitate testing by developing and deploying a testing tool that will automate testing as much as
possible and will allow integrator / tester to execute the above tests without depending on the actual
MONICA services (the testing tool will mock-up it).

Once a Component Owner has implemented and internally tested her / his component, it submits and trigger
a unit testing session.

Before and during Unit Testing, the following activities take place:

• Setting up of the target test environment and configuration of the testing tool for each Component
Owner (to be performed by Tester).

• Test execution based on the test case specifications and the agreed scope & planning (to be
performed by the Component Owner). Each Component Owner will be responsible for logging
defects and capturing test results to facilitate the ongoing assessment of their Component. The
period dedicated to the execution of the tests will be agreed upfront based on the number of use
cases in scope (from … to … working days).

• Note that even though the execution of the Unit testing is under the responsibility of the Component
Owner, Tester will provide guidance and be available to support the Component Owner in case of
problems

• At the end of the test execution period, Tester completes the test report template and sends it to the
Component Owner.

• Once all required tests have been performed, Tester and the concerned Component Owner discuss
the test outcomes and make ongoing summary evaluations of the perceived quality of the
Component implementation. This debriefing should take place directly at the end of the session or no
later than agreed number of working days after the end of the session.

In a unit test, mock objects can simulate the behaviour of complex, real objects.
In some circumstances, it may be useful to use a mock object in its place, if:

• the object supplies non-deterministic results (e.g. the current time or the current
temperature)

• it has states that are difficult to create / reproduce (e.g. a network error)
• it is slow (e.g. a complete database, which would have to be initialized before the test)
• it does not yet exist or may change behaviour

 D7.1 Test and Integration Plan

Document version: 1.0 Page 29 of 49 Submission date: 2017-08-31

(Wikipedia, 2017)

5.3.1.3 Source Code Quality Check Phase

The Source code quality will be inspected at least once per release cycle. The Inspection will be realized by
SonarQube, for details see 3.3. A required quality level will be defined (in cooperation with FIT). The Unit test
reports of the component from the development phase should be also included. The output of this phase
could be a criterion of the Approval phase.

• Preconditions: information about programming languages and their versions per component
• Output: the code quality metrics, list of defects
• Schedule: at least once per release cycle (AD-HOC)

5.3.1.4 Building / Packaging Phase

The next phase after the Quality check is a building / packaging of the components packages. The package
of the component should be operational and deployable. Packages should be either built by the partner, or the
partners should provide a configuration for the successful build of their components, or partners will configure
build the project on the MONICA CI infrastructure. Packages will be stored in the Version Control Repository
(VCR - same as the source code repository).

• Preconditions: configuration of build project (if applicable)
• Output: the separate component packages in VCR
• Schedule: at least once per release cycle, after Quality check

5.3.1.5 Deployment Phase

After the collecting of the component packages in the Version Control Repository, components will be deployed
to the MONICA environment. After a finishing of the deployment process, a successful deployment of the all
components should be checked (the deployment logs check).

In case of the local deployments (demonstration, or components running locally), the provider will be in a way
the producer of the component choose. The Cloud deployments will be implemented by the project CI tool
(Jenkins).

• Preconditions:
o Where – pilot environment/Cloud
o What – all components selected for the Pilot
o Packages committed to VCR

• Output: Components integrated into single environment
• Schedule:

o Prototype - at least once per release cycle
o Pilot – once per year in annual iteration

5.3.1.6 Configuration Phase

The Configuration phase contains the configuration activities of clouds, network (e.g. WIFI, GW), hardware,
sensor devices and others physical equipment needed.

• Preconditions: delivered equipment/devices and instructions for configuration
• Output: working and configured environment
• Schedule: same as in Deployment phase

5.3.1.7 Integration Testing Phase

This phase consists of the Integration (Bi-Lateral) testing of MONICA. During this stage, the one module is
interconnected with the real second module and the test cases more specifically related to functional testing
are executed.

As soon as all the stand-alone unit test cases have been successfully executed, the bi-lateral integration
testing stage can begin.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 30 of 49 Submission date: 2017-08-31

Before and during integration testing, activities like the ones for unit testing are performed (for further details,
please refer to the unit testing activities above):

• The setting up and the configuration of the test environment (performed by Tester)
• The test execution (performed by Tester and Component Owner)
• Upon completion, the test report template is completed and delivered to Component Owner
• Debriefing session between Tester and the concerned Component Owner to discuss the test

outcomes

The integration tests will be realized after the successful deployment of all components to the specific
environment.

• Preconditions: successful deployment of all required components
• Output: tested system prepared for Validation phase
• Schedule: at least once per release cycle, after Deploy

5.3.1.8 IoT Testing

In case of the MONICA project the IoT testing in the distributed environment involving the cloud side and the
remote actors, sensors, data streams etc., is one of the crucial points. The IoT testing covers both
applications/services and devices as well.

Typical IoT applications should:

• to gather sensor data - a variety of inputs like atmospheric pressure, humidity, noise level, motion
tracking, …

• interoperate with different types of hardware, like Arduino boards or Raspberry Pi, others more unusual
or context-specific, like video camera, intelligent glasses or microphones

• interoperate with cloud-based servers, web applications or mobiles from which the IoT devices can be
monitored and controlled

• communicate via API to enable routine data and device diagnostics pulls to cloud servers, as well as
functionality manipulation

Part of the components developed in MONICA project are intended to be used in an IoT scenario meaning
that they cannot make assumptions about how they are being used and by which applications. Therefore, they
need also to be tested from an IoT perspective and to conform to established IoT standards and principles.

IoT Testing includes the following aspects:

• Discovery Interoperability - discover which “Things” are available on the network and how to
communicate with the “Things”. Involves discovery of existence of a “thing” and which IoT services
are offered by the thing

o Device / Service / Resource availability
▪ Before they can be integrated and used by an application they need to be

discovered by the application, testing verifies that it complies with the discovery
mechanisms defined for the specific IoT platform

• Testing will be done using the Linksmart DAC Browser
o IoT Service discovery

▪ Objects need to be able to communicate/report which IoT Services they support

• Testing will be done using the Linksmart DAC Browser
• IoT Service Interoperability

o Web Services
o REST Services

▪ The state and behaviour of the resource can be monitored through simple http GET,
POST and PUT commands

• Testing will be done using standard web browser extension tool (Firefox and
Chrome), or command line REST Client

o UPnP Services

• Testing will be done using the Linksmart DAC Browser
o MQTT Test steps

▪ Publish / receive test steps

• This test step publishes / receive a message to / from a topic on the server

 D7.1 Test and Integration Plan

Document version: 1.0 Page 31 of 49 Submission date: 2017-08-31

▪ Drop connection test step

• Send Disconnect message to MQTT server: send DISCONNECT packet to
the MQTT server and then close the network connection (normal behaviour)

• Close network connection: To simulate some network or client related
problems. It is expected that the MQTT server will publish an appropriate
Message if it was specified for the connection in that case

• IoT Eventing Interoperability - involves several aspects that need to be tested:
o Event format

▪ Testing will be done by intercepting events and checking them against the agreed
schema

o Event Meta content
▪ Testing will be done by message interception and validated by checking the values

provided
o Event payload content

▪ Testing will be done by message interception and validated by checking the values
provided

o Event frequency
▪ Testing will be done by using the Event Trace and Debug Tool

• The Event Trace and debug tool can be independently turn on/off side by
side with the Linksmart Event Manager and provides the capabilities of
eavesdropping on all event communication at a Linksmart Event Manager

o The Event Trace and Debug Tool is used as a standard event
consumer from the Linksmart Event Manager, but it listens to all
events without any filtering and stores them in a database

• IoT Exception and Error Handling - using physical tests like simply shutting down or unplug devices
from their power and observe the corresponding IoT software behaviour

• IoT Data Security and Privacy Testing - ensure the IoT objects that have received data over a secure
channel don´t store or propagate this data in an unsecure manner

IoT Testing will be held concurrently with integration testing:

• Preconditions: successful deployment of all required components
• Output: tested system prepared for Validation phase
• Schedule: at least once per release cycle, after Deploy

5.3.1.9 System Testing Phase

This phase aims to verify the target system End-To-End functionality across the totality of interacting
systems realizing MONICA composite system requirements. Testing verifies that the delivered components
interoperate with each other as expected in the execution of the overall end to end business processes. The
testing covers functional and non-functional testing.

The details of the activities related to End-To-End System testing are currently under development and
therefore out of scope of this version of the document.

The system testing phase will proceed after an Integration testing. In this phase the complex functionality of
the specific domains/loops, as well as functionality of the whole system will be tested.

• Preconditions: successfully integrated environment with test set of data
• Output: operational integrated system
• Schedule: at least once per release cycle

5.3.1.10 Validation Phase

At the end of a release cycle, the evaluation of the system functionality (if the system complies with the
requirement and perform functions for which is intended), will be held.

• Preconditions: successfully integrated environment with test set of data

• Output: operational integrated system

• Schedule: at the end of each release cycle

 D7.1 Test and Integration Plan

Document version: 1.0 Page 32 of 49 Submission date: 2017-08-31

The validation criteria are stated in the previous phases:

• Unit tests

• Source code quality metrics

• Integration tests

• System tests

According to the milestones 11 and 12 – “MONICA prototype Platform integrated for migration to first and
second annual pilot demonstrations” will be considered by Technical Mgr. and Pilot Coordinator (M12, M24)
on the basis of the outcomes of the previous phases.

5.3.2 Test stages

The test stages should be defined to avoid joint ownership, minimise test management effort and to have a
clear set of objectives. The test stage objectives should be defined clearly enough to avoid the risk of
unintentional overlaps or gaps in the test coverage. The names, objectives and sequence of test stages are
specific to each project.

The activities for MONICA testing will follow the workflow highlighted below:

Figure 6: Testing Workflow

 D7.1 Test and Integration Plan

Document version: 1.0 Page 33 of 49 Submission date: 2017-08-31

The first stage of the testing workflow is Test Planning. The Test Planning stage outlines the overall
methodology and strategic direction that the Testing team plans to follow. The tactical details (test
identification, testing workflow, etc..) needed for the implementation of the testing strategy and approach are
documented in the Test Plan by the test manager.

The second stage is Test Preparation. During this step, the test designers create test cases; prepare test
data and scripts while testers set up the test environment.

The third stage is Test Execution. During the testing process, some test cases may fail and defects will be
associated with the failures. Defects will be formally tracked and addressed, following the defect
management process outlined in section 5.3.6.1.

The fourth stage, Test Closure, is the step which focuses on getting a global overview of the test results,
collecting lessons learned and creating Test Reports.

5.3.2.1 Preparation

This includes the following deliverables:
• Integration Test Approach: the current document
• Test case specifications: a document describing the test cases identified for the Unit testing, for the

Integration testing and for the System testing
• Test data template: a template to collect the necessary test data to execute the test case

specifications
• Test report template: A template to provide an overall status of executed test cases and of identified

defects
The preparation activities also include the development of a testing tool will mock-up the behaviour of the
components not finished yet. The testing tool will be accessible to the Testers and will allow them to execute,
during the unit testing phase, the tests defined in the test case specifications.

The milestone of these preparation activities is the approval by Component Owner of the test approach and
scenarios to be executed as well as on the planning of the testing activities. Test preparation activities
should be completed prior to Annual Platform Deployment 2017.

5.3.2.2 Execution, Rework, Review, and Retest Procedures

A key success element throughout Integration Testing is the planning, coordination, facilitation, and
communication activities that take place among stakeholders on a regular basis, as described in the
following sections.

An overview of the planned activities is represented in the Figure below.

Prep. activities Unit Testing Integration Testing System Testing

Figure 7: Integration Test Activities

 D7.1 Test and Integration Plan

Document version: 1.0 Page 34 of 49 Submission date: 2017-08-31

Testing execution phase – test execution will be monitored in JIRA, where all results and bugs / issues
founded will be recorded. Bug / issue = a difference between desired and recorded behaviour. Bugs will be
reported, analysed, and corrected, the whole process will be fully monitored in JIRA. Bug resolving is related
to escalations, priority settings, and meetings planning to risks evaluation (time, severity, affecting of users /
other components), extended testing and / or release re-planning.

The test could take the following state:

PASS – Test finished without errors
FAIL – Test was executed, but non-trivial errors occurred
WIP – “Work in progress” – a temporary state of testing scenarios, test not finished yet
BLOCKED – test cannot be finished due to error
NO RUN - Test not started yet
N/A – Test scenario not applicable in current release

Each bug will be classified in JIRA and addressed to resolver. Reports and statistics of testing are the
outputs of executing phase.

The severity of issue / bug can be defined as:

• Critical problem (A)
• Major problem (B)
• Minor problem (C)

Detailed definition:
Critical problem (A): functional defects that prevent data processing and end-to-end display, including data
security and data corruption, incorrect calculation results, or errors causing the system to reboot, while faulty
functionality can not be implemented at the same time Substitute procedures. A critical issue is considered
particularly:

• Non-functional SW component as whole, or his major part

• A problem related to major group of users, or

• A problem that is repeatedly feasible or of a permanent nature or the SW component is unusable for
the purpose of providing basic user processes and activities for other reasons

Major problem (B): defects that would fall under the Critical Problem (except for issues related to security and
data corruption) but to which a workaround can be found to circumvent or prevent a defect. This substitute
must be reasonably practicable. A major problem is the failure of the functioning of modules and functions,
which severely restricts their use, without restricting the use of the SW component as a whole or its essential
parts. The Serious Problem is characterized by a problem that can be repeated or persistent, but the SW
component is usable for securing the basic processes and activities of the user with a noticeable impact on
the quality of SW component creation or the availability of its functionalities or user comfort.

Minor problem (C): does not meet the Critical Problem or Serious Problem. These are in particular defects
that do not prevent the productive use or cause slight discomfort when working with, which is, however,
functional.

The tester will determine the severity of the problem based on the principles described above. The severity
of the problem (severity) may be reassessed by mutual agreement between the development team and the
integrator.

5.3.2.2.1 Integration Test Description

The justified selection of planned and excluded test types out of a standard series of test types is depicted
below.

Table 4: Included and Excluded Test Types

Testing Type Included Motivation

Architectural Pattern Yes Verify system specified architectural pattern realisation

 D7.1 Test and Integration Plan

Document version: 1.0 Page 35 of 49 Submission date: 2017-08-31

Interface Yes
Validate system-to-system interactions compliance against the
designated interface signatures

Functional Yes
Verify functional requirements implementation, stemming from use
cases and business rules

Security No

Verify conformance with security requirements and system business
function and data access. In particular confidentiality, integrity,
availability, authentication, authorization, non-repudiation, time
stamping, security logging.

Implementation Yes
Verify technology specifications implementation and conformance. It is
performed during the development

Recovery No
Ensure software system can be recovered upon failure of hardware,
software, or network malfunctioning with undue loss of data or data
integrity

User Interface No
Verify graphical user interface access and navigation across
application functionality

Business Cycle No
Verify system functionality encapsulating time constraints or execute
over an extended period. This includes tests for use cases where
expiration date or timestamps are involved.

Performance No
Verify compliance with specified response times, transaction rates,
and other time sensitive requirements

Load No Verify system stability under nominal workloads

Stress No Verify system stability under stress conditions (e.g. workload limits)

Volume No
Determine the limits of the system subjected to large volume of
transactions

Configuration No
Verify system operation under different hardware and middleware
configurations

Installation Yes
Ensure required hardware, middleware, and application resources are
available and operate correctly

Database Integrity No

Ensure seamless operation of databases and database processes as
separate systems
At this stage, it is not foreseen to verify database by other means than
the requirements concerning data integrity

Regression Yes
No defects are introduced upon an implementation update or change
request realisation

5.3.2.2.1.1 Architecture Patterns Testing

Architecture patterns testing refer to the process of testing the implementation of architectural decisions. The
goals of this type of test are to verify that the architectural layers are function as specified and that all
messaging flows work properly. This process helps to improve the quality and interoperability of architectural
components within the MONICA.

Table 5: Architecture Patterns Testing

Test Objective(s) Verify that the architectural patterns are correctly implemented

Technique Execute the list of test cases defined.
- This list of test cases covers architectural decisions regarding

application architecture identified in D2.2 The MONICA IoT
Architecture Specification

Exercise each use-case scenario's individual messaging flows and
features, using valid and invalid data, to verify that:
• The expected results occur when valid data is used in all test cases
• The appropriate error or warning messages are generated when invalid

data is used
• Each business rule is properly applied
The appropriate information is retrieved, created, updated, and deleted.

Test Resources SOAP UI

Exit Criteria All planned tests have been successfully executed.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 36 of 49 Submission date: 2017-08-31

Special
Considerations

N/A

5.3.2.2.1.2 Interface Testing

Verifies of the Web Service. These tests verify that the Web Service provides the appropriate response to
predefined inputs.

Table 6: Interface Testing

Test Objective(s) • Verify the interface integration between Gateway and Adaptation Layers,
as well as Adaptation and Middleware Layers, Middleware, and DSS
Layers, DSS and APP Layers (this includes the testing of all interfaces
including interface logic and interface transmission)

• Reduce the likelihood of integration defects being identified during
Acceptance Testing or within the production environment following
implementation

Technique Interface testing involve different kinds of tests. These include but are not
limited to:
• Baseline Tests: These tests execute each method in isolation, commonly

focusing on boundary conditions. Baseline test are performed for
synchronous and asynchronous communication.

• Data-Oriented Tests: Input and output messages are tested to validate
both syntactic and semantic interoperability. Valid data and forced error
Tests (SOAP Fault error, empty content, and content exceeding
maximum limits) should be executed.

Test Resources soapUI/loadUI and JMeter can be utilized as the backbone of Interface
testing framework

Exit Criteria Test case is successful.

Special
Considerations

N/A

5.3.2.2.1.3 Functional Testing

Focuses on any requirements for test that can be traced directly to use cases or business functions and
business rules. The goals of these tests are to verify proper data acceptance, processing, and retrieval, and
the appropriate implementation of the business rules. The following table describes an outline of the testing
recommended for each MONICA module.

Table 7: Functional Testing

Test Objective(s) Verify the expected implementation of the user and system requirements.
Exercise target-of-test functionality by ensuring proper MONICA
functioning, data entry, processing, and retrieval to observe and log target
behaviour.

Technique Execute the list of test cases defined. This list of test cases covers all the
identified and documented functionalities. Exercise each use-case
scenario's individual use-case flows or functions and features, using valid
and invalid data, to verify that:

• The expected results occur when valid data is used in all test cases

• The appropriate error or warning messages are displayed when
invalid data is used

• Each business rule is properly applied

 D7.1 Test and Integration Plan

Document version: 1.0 Page 37 of 49 Submission date: 2017-08-31

• The appropriate information is retrieved, created, updated, and
deleted

Test Resources • Compatible Web Browsers
• Soap UI (automated testing tool)
• FusionCharts (java scripts visualisation tool)
• Provided mocks

Exit Criteria • The execution of each test case is successful per expected result
• Divergences are logged in a test report. Whenever necessary, the

Development Team provide an analysis of the divergence

Special
Considerations

Availability of test data and appropriate test environment.

5.3.2.2.1.4 Implementation testing

Implementation testing refers to the process of testing implementations of technology specifications. This
process serves the dual purpose of verifying that the technology specification is implementable in practice,
and that implementations conform to the specifications. This process helps to improve the quality and
interoperability of implementations. Implementation is mostly performed within the unit testing stage, during
the development of the system, to verify the proper implementation of specific modules or units.

Table 8: Implementation Testing

Test Objective(s): Implementation testing ensures that specifications, standards, policies,
conventions, and regulations are respected.

Technique: For each new, updated or configured component to be verified against
its technical specification.

Test resources: Junit

Completion Criteria: All planned tests have been executed.

Special Considerations: None.

5.3.2.2.1.5 Installation Testing

Installation testing has two purposes. The first is to ensure that all required software and hardware resources
are available for MONICA (e.g. WEB servers, APP servers, databases, etc.). The second purpose is to verify
that, once installed, the software and hardware operate correctly. This usually means running several tests
that were developed for Function testing.

Table 9: Installation Testing

Test Objective(s) Install and assess required software and hardware resources.

Technique Install package software and run installation validation scripts.

Test Resources All required software and hardware resources.

Exit Criteria The main pages are properly displayed.

Special
Considerations

N/A

5.3.2.2.1.6 Regression Testing

Regression Testing aims at testing a previously tested program following a modification. The purpose is to
ensure that defects have not been introduced or uncovered in unchanged areas of the software, because of
the changes made. It is performed when the software or its environment is changed.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 38 of 49 Submission date: 2017-08-31

In the context of MONICA, it is not applicable for the first release of the system. However, the entire set of
test cases are performed by default for each version of the System excepted if explicitly mentioned in the
release note of the related version.

Table 10: Regression Testing

Test Objective(s) Verify that all functions work properly after code changes in new
builds/releases.

Technique Run all test cases of the previous build/iteration/release.
There is no formal regression testing level (stage) but regression testing is
conducted as needed.

Test Resources Test report.

Exit Criteria All planned tests have been successfully executed.

Special
Considerations

N/A

5.3.3 Ownership of the Integration and Test phases

Clear ownership is essential for an efficient and effective program Integration and Test Strategy especially
where the ownership of the integration and test phases is distributed amongst several stakeholders. The
integration and test phase owner takes responsibility for producing the test plan, test cases, acquiring the
test data, executing the tests, logging defects, retesting and reporting test progress. In the later phases the
phase owner may require the support of other stakeholders and may delegate responsibility for the test
management to a third party. User Acceptance Testing is a frequent example of a phase that requires
participation from many stakeholders. Although the user representative owns the User Acceptance Test, test
management may be provided by a third party and the test environments and applications may be supported
and maintained by supplier representatives. The Strategy should make the responsibilities of the owner and
various stakeholders clear. The names, objectives, entry/exit criteria and ownership of the integration and
test phases will be specific to each program. The naming of the integration and test phases should consider
the existing naming conventions of the stakeholders to mitigate the risk of confusion and misunderstanding
during the implementation of the Strategy.

Some stakeholders may consider regression test as a specific test phase but in the context of the overall
program virtually all the test phases should be executing a portion of regression tests. As a general principal,
this Integration and Test Strategy Guide considers the regression test as a test technique applied within
each test phase rather than a test phase in its own right. The program requirements will determine what
regression testing is required and where, when and how that is best executed within each of the test phases.
The risk based approach demands that the test phase sequence and content mitigate the greatest risks as
early as possible whilst being mindful of practical delivery and resource constraints that may limit the choices
for scheduling the test phases. Consider options for improving the robustness of the Integration and Test
Strategy to potential changes in dependencies dates and content.

5.3.4 The phase entry and exit criteria

Once testing has begun, the MONICA testing team must track exit, suspension and resumption criteria
through the end date identified in the testing schedule. The next criteria are applicable to Unit, Integration
and System test.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 39 of 49 Submission date: 2017-08-31

Figure 8: Decision criteria (Source: Atos GDP)

 D7.1 Test and Integration Plan

Document version: 1.0 Page 40 of 49 Submission date: 2017-08-31

Table 11: Entry and exit criteria

Test phase Entry criteria Exit criteria

Unit Tests • Planning phase has been completed.

• System design, technical design and

other relevant documents are properly

reviewed, analysed and approved.

• Business and functional requirements

are defined and approved.

• Testable codes or units are available.

• Availability of test environment.

•

• Successful execution of the unit

tests.

• All the identified bugs have been

fixed and closed.

• Project code is complete. There

are no missing features or

elements.

•

Component
Integration
Tests

• Development is done, the code is

frozen

• Integration/System Test environment

is set, interfaces are set and functional

• All testing restrictions are known

• Documentation for testing is available

and final

• Test plan is accepted

• Requirements / assumptions of

testing are defined

• Static data and access rights are set

• Test data are available

• Unit tests are finished, existing issues

are communicated, adressed, the

solution is timed

• Test cases are validated and ready to

execute

• Smoke test has been finished with

positive result

• Integration of new components is

verified and functional (limitation of

test environment taken into

account)

• The whole content of planned

release is implemented (all issues

of release are in state „Resolved“)

• Number of open issues for

release:

o Critical/Showstoppers - 0,

o Major issue - 0,

o Minor issue – not exceed

10 issues

• Version is ready for next level /

phase of testing

• All planned scenarios were

executed at least once, the results

of testing are available / recorded

in JIRA

• The issues are documented, next

steps defined and adressed

(including timing)

System
Integration
Tests

• Pre-Production test environment is

set, interfaces are set and functional

• All testing restrictions are known

• Static data and access rights are set

• Test data are available

• System integration tests are finished,

existung issues / bugs are

communicated and adressed (exit

criteria of previous test phase are

fulfiled)

• Acceptance test cases are ready to

execute

• The version is ready for release

• Integration is fully functional - all

functional requirements were

tested / rejected with rational

• All planned test scenarios were

executed at least once, the

results of testing are available /

recorded in JIRA

• All issues are documented, next

setps defined and adressed

(including timing)

• Number of open issues for

release:

o Critical/Showstoppers - 0,

o Major issue - 0,

o Minor issue – not exceed

10 issues

 D7.1 Test and Integration Plan

Document version: 1.0 Page 41 of 49 Submission date: 2017-08-31

5.3.5 Suspension and Restart Criteria

Suspension criteria must be evaluated during the execution of the test phase. The criteria are based on the
following strategy:

• In case the 5 first test cases are not successful; the tester must contact the configuration team to
verify the proper configuration of the system

o If the system is properly configured and the following 5 consecutive tests fail, the tester must
contact the test manager to decide if the test campaign must be suspended. This is only
applicable for integration and system testing. In case of unit testing, the tester contacts the
Master test manager and if they decide to suspend the test campaign, they inform FIT.

o After 10 test cases marked as failed (non-consecutive), the tester must contact the Master
test manager to decide on the possible suspension of the test campaign

After correction of blocking issues or configuration problem, the testing manager gives his approval that the
test campaign can be safely resumed. The suspension process is summarized on the picture below:

Contact the
configuration

team

Contact the project manager
to decide if the test campaign

must be suspended

Yes

The system is
properly

configured ?

The test
campaign is
suspended?

No

Contact the project manager to
decide on the possible suspension

of the test campaign

Run Test 1 to 5

Run Test 6 to 10
Correct

configuration
problem

No

Run next tests
Correct blocking

issues

Run next tests
The test

campaign is
suspended?

No
Correct blocking

issues

Start

End

Yes

Yes

Tests 1 to 5
failed

Yes

No

Tests 6 to 10
failed

Yes

No

10 test cases
non-

consecutive
failed

Yes

No

Figure 9: Test Campaign workflow

5.3.6 Products output from the test process

Test work products are divided into inputs and outputs. Input products influencing the Test Strategy should
be identified. These may be a variety of requirements, specifications, models, prototypes, corporate
standards, industry standards, international standards, legislation, and regulations.

Output products resulting from the processes defined in the Test Strategy consist of a generic set of
products and program specific products.

The generic set of potential test products include:

• Test preparation products:

 D7.1 Test and Integration Plan

Document version: 1.0 Page 42 of 49 Submission date: 2017-08-31

o Master Test Plan / Detailed Test Plan (if required)
o Test Conditions
o Test Cases (including Scripts)
o Test input data (specifications for production data or files of artificially generated input test

data)
• Test execution products:

o Test Results
o Incident Reports (an observation of unexpected behaviour not yet classified as a defect,

script error, data error, or tester error)
o Defect Reports
o Test Metrics

• Test completion products:
o Test Report
o Lessons Learned Report (specific to test engagements)
o Archived testware (for audit record and for handover to production support team).

A RACI matrix can define the roles and responsibilities associated with each test product. Bear in mind that
third party suppliers may also be producing test products. In effect, the deliverables from each test phase
should be subject to review.

5.3.6.1 Problem Recording and Resolution

5.3.6.1.1 Defect management

Defect management is a lifecycle of the defect. It starts at the time of defect recognition and ends at
resolving is closed. From the quality point of view, the defect management consist of:

• Creation of the bug report
• Bug analysis
• Bug assignment
• Bug correction
• Verifying of bug correction

5.3.6.1.2 Creation of the bug report

The process describes identification of the bug and reporting it in JIRA.

Table 12: Creation of the bug report

Input Identificated bug

Output Report of identified bug

Responsibility Developer, Tester

5.3.6.1.3 Bug analysis

Table 13: Bug analysis

Input Report of identified bug

Output • Initial version of Report of identified bug
• Final version of Report of identified bug
• Closed / resolved bug

Responsibility Authorised person

Related roles Developer, Tester

5.3.6.1.3.1.1 Detailed specification of Report of identified bug

Activated in case of more details is needed to describe the identified bug.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 43 of 49 Submission date: 2017-08-31

Table 14: Detailed specification of Report of identified bug

Input Initial version of Report of identified bug

Output Detailed Report of identified bug

Responsibility Developer, Tester

Related roles Authorised person

5.3.6.1.4 Bug assignment

Assignment of bug correction to authorised person.

Table 15: Bug assignment

Input Final version of Report of identified bug

Output Assigment to authorised person to resolve the identified bug

Responsibility Authorised person

5.3.6.1.5 Bug correction

Root cause analysis and correction time assumption actualise the Report of identified bug.

Table 16: Bug correction

Input Final version of Report of identified bug

Output The bug is resolved

Responsibility Authorised person

5.3.6.1.6 Verifying of bug correction

The author of the Report performs the bug correction verification process. The outcome of this process is
either to approve or to deny a bug correction, where the bug is re-assigned to the responsible person with
the explanation of the disapproval and added comments to the report.

Table 17: Verifying of bug correction

Input Final bug resolving

Output • Approval of bug correction
• Rejection of bug correction, modification of Report

Responsibility Developer, Tester

Table 18: Assessing bugs by severity

Bug classification Affected area Bug behaviour

Critical problem (A); Sev1
(Critical)

Testing • Testing process is fully, or heavy blocked (>
80% test scenarios is blocked)

Major problem (B); Sev2
(Major)

Testing • Testing is less blocked (< 40% % test scenarios
is blocked)

Minor problem (C); Sev3
(Minor)

Testing • Testing is mostly not affected (< 5% test
scenarios is blocked).

 D7.1 Test and Integration Plan

Document version: 1.0 Page 44 of 49 Submission date: 2017-08-31

5.3.7 Responsibilities

This table shows the staffing assumptions for the test effort.

Table 19: People and Roles

Role Specific Responsibilities or Comments

Test Manager Provides management oversight
Responsibilities include:

• planning and coordination

• agree mission

• identify motivators

• acquire appropriate resources

• present management reporting

• advocate the interests of test

• evaluate effectiveness of test effort

Test Designer

Identifies and defines the specific tests to be conducted
Responsibilities include:

• identify test ideas

• define test details

• determine test results

• define test automation architecture

• verify test techniques

• define testability elements

• document change requests

• evaluate product quality

Tester Implements and executes the tests

Responsibilities include:

• implement tests

• execute tests

• analyse and recover from test failures

• document incidents

5.3.7.1 Test RACI matrix

The table below presents the RACI table for the testing types in scope for each testing phase. The following
roles in completing tasks are foreseen:

• R - Responsible: person who performs an activity or does the work.

• A - Accountable: person who is ultimately accountable and has Yes/No/Veto

• C - Consulted: person that should provide feedback and contribute to the activity.

• I - Informed: person that should know of the decision or action.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 45 of 49 Submission date: 2017-08-31

Table 20: RACI Matrix

 R A C I

Unit Test

Implementation Component Developer
Component
Developer

-
Component Project

Manager

System Test

Business Cycle
Testing

MONICA Tester MONICA Test
Manager

MONICA Test
Designer

Component Project
Manager

MONICA Coordinator

Integration Test

Interface testing ComponentTester Component owner
MONICA Test

Designer

MONICA Coordinator
Component Project

Manager

Functional Testing ComponentTester Component owner
MONICA Test

Designer

MONICA Coordinator
Component Project

Manager

Acceptance Test

Performance Testing MONICA
PlatformTester

MONICA
Coordinator

MONICA Test
Designer

Technical Mgr and
Pilot Coordinator

Load/Stability Testing Tester Component owner Test Designer MONICA Coordinator

Stress Testing Tester Component owner Test Designer MONICA Coordinator

Volume Testing Tester Component owner Test Designer MONICA Coordinator

Functional Testing Tester Component owner Test Designer MONICA Coordinator

Business Cycle
Testing

Tester Component owner
Test Designer

MONICA Coordinator

5.4 MONICA Continuous Integration Environment

For MONICA CI environment, the standard tools from FIT environment were chosen:

• Atlassian JIRA for Issue & Project tracking
o As an agile board for an application development
o As an Issue & Project tracking tool for the integration and testing

o The teams interoperation will be organized in sprints, administered in JIRA

• SCM-Manager for management of Source Code Repository
• SonarQube for Continuous Inspection of Code Quality
• Jenkins Bulid Server

o Additional plug-ins can extend Jenkins, e.g., for building and testing Android applications or
to support the Git version control system.

For more details see 3.1.2.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 46 of 49 Submission date: 2017-08-31

Figure 10: Continuous integration environment

5.5 Test environments

Provision must be made for adequate testing environments. As a minimum, the following separate test
environments should be provided:

• Development/Unit Test – this is expected to be placed in partner’s environment
• Integration/System Test
• A Pre-Production environment representative of the live environment

Ideally, User Acceptance Testing (UAT) should be undertaken in the Pre-Production environment. Where
that is not practical, UAT shall still be executed in a test environment that accurately emulates the user
experience using as close to production configuration settings as possible.

Remark: Minimum requirements should not limit mind of thinking in innovative testing solution, e.g. cloud
based testing.

5.6 Test data

Once test data are provided, the provided test data set needs to be frozen at the test environment to ensure
that it cannot change during the testing session. Tester will use these data to create input and output
messages in line with the test cases.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 47 of 49 Submission date: 2017-08-31

6 Conclusion

This deliverable has described the integration and testing approach, strategy and plan for MONICA project.
Integration and Test plan is based on the current definition of the overall architecture; the plan will evolve along
with the platform architecture, but the approach and overall plan will remain unchanged. The overall integration
strategy has been discussed, and emphasis has been put on the continuous integration model used, which
requires good for software code management.

Strategies are influenced by agile software development processes, but the development methodology of
components is independent from the integration. The MONICA platform will be a system where applications
work with a dynamically changing range of devices and other resources.

Because of the current state of several inputs from the other deliverables (overall MONICA Architecture, details
of interfaces definitions still under development), the Platform release plan schedule in 5.2.3 is a draft
determined by defined MONICA Milestones, Pilot demonstrations and mapping of the pilot requirements can
be changed / redefined based on project evolution, as well as a Risk plan related to pilots, with corresponding
mitigation actions, can be part of an individual Prototype deployment preparation.

 D7.1 Test and Integration Plan

Document version: 1.0 Page 48 of 49 Submission date: 2017-08-31

7 List of Figures and Tables

7.1 Figures

Figure 1: A Scalable Agile process iteration (Quotium, 2014) ... 9
Figure 2: Metrics to measure the quality of the code (focused on Java / C#) ... 16
Figure 3: Sonar Dashboard ... 18
Figure 4: MONICA IoT Architecture ... 25
Figure 5: The Integration Process Stages ... 27
Figure 6: Testing Workflow .. 32
Figure 7: Integration Test Activities ... 33
Figure 8: Decision criteria (Source: Atos GDP) ... 39
Figure 9: Test Campaign workflow .. 41
Figure 10: Continuous integration environment .. 46

7.2 Tables

Table 1: Standard targets for Code Metrics... 16
Table 2: Recommended process guidelines and tools .. 17
Table 3: Actors and their integration activities in MONICA Project ... 21
Table 4: Included and Excluded Test Types ... 34
Table 5: Architecture Patterns Testing .. 35
Table 6: Interface Testing .. 36
Table 7: Functional Testing ... 36
Table 8: Implementation Testing ... 37
Table 9: Installation Testing ... 37
Table 10: Regression Testing .. 38
Table 11: Entry and exit criteria ... 40
Table 12: Creation of the bug report .. 42
Table 13: Bug analysis .. 42
Table 14: Detailed specification of Report of identified bug .. 43
Table 15: Bug assignment ... 43
Table 16: Bug correction.. 43
Table 17: Verifying of bug correction ... 43
Table 18: Assessing bugs by severity ... 43
Table 19: People and Roles .. 44
Table 20: RACI Matrix ... 45

 D7.1 Test and Integration Plan

Document version: 1.0 Page 49 of 49 Submission date: 2017-08-31

8 References

(ISO/IEC 9126) Software Engineering. Product Quality. Part 1: Quality model.

Technical Report ISO/IEC 9126-1:2001(E), ISO/IEC.

(IEEE Std 610.12, 1990) IEEE Std 610.12 (1990): IEEE Standard Glossary of Software Engineering
Terminology. IEEE Standards Association.

(Fowler, 2006) Martin Fowler, “Continuous Integration”, 01 May 2006

(Quotium, 2014) Continuous Integration in Agile Development,
http://www.quotium.com/resources/continuous-integration-agile-
development, Accessed 01-04-2017

(Larri Rosser, 2013) Larri Rosser, Phyllis Marbach, Gundars Osvalds, David Lempia, “Systems
Engineering for Software Intensive Projects Using Agile Methods”, 2013

(Vogella, 2017) Continuous integration with Jenkins – Tutorial,
http://www.vogella.com/tutorials/Jenkins/article.html#using-the-jenkins-build-
server, Accessed 2017-04-01

(GitLab, 2017) Git, https://git-scm.com, Accessed 2017-24-04

(SCM-Manager, 2017) SCM-Manager, https://www.scm-manager.org, Accessed 2017-02-02

(SonarQube, 2017) SonarQube, https://www.sonarqube.org, Accessed 2017-02-02

(JUnit, 2017) JUnit. http://www.junit.org, Accessed 2017-06-01

(SoapUI, 2017) SoapUI. https://www.soapui.org, Accessed 2017-07-01

(JMeter, 2017) Apache JMeter, http://jmeter.apache.org, Accessed 2017-07-01

(FusionCharts, 2017) FusionCharts, http://fusioncharts.com. Accessed 2017-07-01
(Wikipedia, 2017) Wikipedia, https://en.wikipedia.org/wiki/Mock_object, Accessed 2017-08-29

http://www.quotium.com/resources/continuous-integration-agile-development
http://www.quotium.com/resources/continuous-integration-agile-development
http://www.vogella.com/tutorials/Jenkins/article.html#using-the-jenkins-build-server
http://www.vogella.com/tutorials/Jenkins/article.html#using-the-jenkins-build-server
https://git-scm.com/
https://www.scm-manager.org/
https://www.sonarqube.org/
http://www.junit.org/
https://www.soapui.org/
http://jmeter.apache.org/
http://fusioncharts.com/
https://en.wikipedia.org/wiki/Mock_object

