
 

 

 
 
 

 
 
 
 
 
 

Management Of Networked IoT Wearables – Very Large Scale 
Demonstration of Cultural Societal Applications  

(Grant Agreement No 732350) 
 

 
 
 
 
 

D7.5 The MONICA Development Toolbox 1 
 

Date: 2018-12-31 
 

Version 1.0 
 

  

 
Published by the MONICA Consortium  

 
Dissemination Level: Public 

 
 

  
Co-funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation under Grant 

Agreement No 732350 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 2 of 26 Submission date: 2018-12-31 

Document control page 
 
Document file: D7.5 The MONICA Development Toolbox 1.docx 
Document version: 1.0 
Document owner: CNet 
 
Work package: WP7 – Components & Cloud Integration 
Task: T7.6 – The MONICA Development Toolbox 
Deliverable type: [OTHER] 
 
Document status:  Approved by the document owner for internal review 
  Approved for submission to the EC 
 
 
Document history: 
 

Version Author(s) Date Summary of changes made 

0.1 Peeter Kool (CNet) 2018-10-18 Created ToC 

0.2 Peter Rosengren 2018-11-30 Updated IoT Monitoring draft tool 

0.3 ISMB 2018-12-05 SCRAL chapter 

0.4 Mathias Axling (CNet) 2018-12-07 Updated Messager Broker 

0.5 Peter Rosengren 2018-12-10 Added Service Catologue 

0.6 Peeter Kool 2018-12-11 Added Entity Catologue 

0.7 Vivian Esquivias (CNet) 2018-12-12 Reviewed chapter on IoT Monitoring Tool 

0.9 Peter Rosengren, Peeter Kool 2019-01-05 Ready for peer review 

1.0 Peter Rosengren, Peeter Kool 2019-01-20 Updated after peer review. Final version 
submitted to the European Commission 

 
 
 
 
Internal review history: 
 

Reviewed by Date Summary of comments 

Nathalie Frey/Arjen Schoneveld, DEXELS 2019-02-15 Approved with comments 

Pierre-Yves Hors, Optinvent 2019-02-15 Approved with comments 
 
 
 
 
 
 
 
 

Legal Notice 
The information in this document is subject to change without notice. 

The Members of the MONICA Consortium make no warranty of any kind with regard to this document, 
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. 
The Members of the MONICA Consortium shall not be held liable for errors contained herein or direct, 
indirect, special, incidental or consequential damages in connection with the furnishing, performance, or 
use of this material. 

Possible inaccuracies of information are under the responsibility of the project. This report reflects solely 
the views of its authors. The European Commission is not liable for any use that may be made of the 
information contained therein. 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 3 of 26 Submission date: 2018-12-31 

 
 
 
 
 
 
 
 
Index: 
 
1. Executive Summary (CNet) ................................................................................................ 4 
2. Introduction......................................................................................................................... 5 
3. MONICA Tools .................................................................................................................... 6 

3.1. IoT Monitoring Tool ......................................................................................................... 6 
3.2. IoT Entity, Service and Resource Catalogues ................................................................. 6 

3.2.1. IoT Entity Catalogue ............................................................................................ 7 
3.2.2. Service Catalogue ............................................................................................... 8 

3.3. IoT Resource Management and Catalogue Tool ........................................................... 12 
3.3.1. Resources Configuration ................................................................................... 12 
3.3.2. Resources Discovery ........................................................................................ 14 
3.3.3. Resources Health Monitoring ............................................................................ 14 

4. Generic Enablers .............................................................................................................. 17 
5. Third-party Tools .............................................................................................................. 18 

5.1. Message and Event Broker Configuration ..................................................................... 18 
5.1.1. Basic Concepts ................................................................................................. 18 
5.1.2. Message Broker Monitoring, Configuration and Management ............................ 21 
5.1.3. Management of offline situations ....................................................................... 23 

5.2. KeyCloak ...................................................................................................................... 23 
5.3. GOST ........................................................................................................................... 24 

6. Conclusion ........................................................................................................................ 25 
7. List of Figures ................................................................................................................... 26 
 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 4 of 26 Submission date: 2018-12-31 

1. Executive Summary (CNet) 

The MONICA Development Toolbox can be used to integrate various resources into the IoT Platform and hides 
the complexity of the communication with IoT devices. It features model-driven development of services that 
use the MONICA platform, also in connection with available Open Data sources. It will be based on a structure 
of service ontologies where a conceptual domain model describes the application, the services to be deployed 
and the objects involved (devices, users, rules, repositories, etc). The MONICA Toolbox is divided into three 
different categories: 

• Software Developer Tools. These are packaged tools with user interfaces intended to be used by 
developers. They have been developed by the MONICA project. 

• Generic Enablers. These are re-usable software components developed by the MONICA project. 
MONICA generic enablers are made available in an Open Source GIT repository and can be used by 
entrepreneurs, start-up and established companies alike. 

• Third Party Services and Tools. These are some openly available third-party tools that are 
recommended by the MONICA project to use when building Large Scale IoT applications. MONICA 
Tools and Generic Enablers have available interfaces for these third-party tools and services. 

 

 

 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 5 of 26 Submission date: 2018-12-31 

2. Introduction 

The MONICA project aims to provide a very large scale demonstration of multiple existing and new Internet of 
Things technologies for Smart Events. The solution will be deployed in 6 major cities in Europe. MONICA 
demonstrates a large scale IoT ecosystem that uses innovative wearable and portable IoT sensors and 
actuators with closed-loop back-end services integrated into an interoperable, cloud-based platform capable 
of offering a multitude of simultaneous, targeted applications. 

This deliverable is based on work in task 7.5. The task develops an open software development toolbox and 
generic enablers that allow developers to rapidly develop new applications to be deployed on the MONICA 
platform. The development platform consists of a toolbox and a set of tutorials and guidelines.  

The MONICA Toolbox is divided into three different categories: 

• Software Developer Tools. These are packaged tools with user interfaces intended to be used by 
developers. They have been developed by the MONICA project. They are described in Chapter 3. 

• Generic Enablers. These are re-usable software components developed by the MONICA project. 
MONICA generic enablers are made available in an Open Source GIT repository and can be used by 
entrepreneurs, start-up and established companies alike. 

• Third Party Services and Tools. These are some openly available third-party tools that are 
recommended by the MONICA project to use when building Large Scale IoT applications. MONICA 
Tools and Generic Enablers have available interfaces for these third-party tools and services. They 
are described in Chapter 5. 

The toolbox can be used to integrate various resources into the IoT Platform and hides the complexity of the 
communication with IoT devices. It features model-driven development of services that use the MONICA 
platform, also in connection with available Open Data sources. It will be based on a structure of service 
ontologies where a conceptual domain model describes the application, the services to be deployed and the 
objects involved (devices, users, rules, repositories, etc).  

The MONICA Development Toolbox will be demonstrated in WP11 through the Entrepreneurship and 
Innovation programme where funding will be available for start-ups wishing to develop apps using the MONICA 
IoT toolbox and enablers. Deployment of the toolbox has been coordinated with the call for tenders for new 
apps in WP11 and the availability of demonstrations across the pilots. 

This deliverable documents the first version of the MONICA Toolbox. 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 6 of 26 Submission date: 2018-12-31 

3. MONICA Software Developer Tools 

3.1. IoT Monitoring Tool 

In any IoT system there is always a need to keep track of the status of sensors and devices. Two main issues 
need to be considered – values that are not being reported and values that are erroneous. The IoT Monitoring 
Tool allows an operator to view the current status of the different deployed sensors and devices. 

 
The main functionalities provided by the IoT Monitoring Tool are: 
 

• Listing and overview of available sensors and devices 
• Storage and presentation of meta data related to sensors/devices 

o Type of device, serial number, installation date, vendor 
• Storage and presentation of meta data related to the physical location of the sensor/device 

o GPS coordinates or building information (room, floor), physical address, customer/owner 
data 

• Meta data related to operation of the sensors 
o Expected reporting frequency, expected value ranges 

• Presentation of current values and historical values 
o Tables and graphs 

• Presentation of error states 
o Last reported values 

• Maintenance related data 
o Last repair, frequency of errors/malfunction 

o Rights to sensor data, granularity level. 
 

The IoT Monitoring tool provides access to the following data sources: 

• Current Status Database 

o This represent the latest values of all available sensors, or the status flags in devices. It is 
stored in a SQL (Structured Query Language) database 

• Historical Sensors Readings 

o OGC (Open Geospatial Consortium) compliant data store containing the data streams for the 
different sensors. Most likely NoSQL database 

• IoT meta data  

o IoT-A compliant database to represent the IoT sensors and their mapping to the physical world 
being observed 

• Domain Database 

o This contains the application specific data. 

The IoT Display presented in D3.6 “IoT Display for Large Scale IoT Installations” has been largely implemented 
using the IoT Monitoring Tool. 

3.2. IoT Entity, Service and Resource Catalogues 

The Entity, Service and Resource Catalogues manage and store meta data related to the Entities being 
managed and monitored in the Large Scale Event and the available Services and Resources that can be 
used by applications. The catalogues also provide an? on boarding tool for populating the catalogues with 
relevant data. Furthermore it provides a query interface for retrieving data. 
 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 7 of 26 Submission date: 2018-12-31 

3.2.1. IoT Entity Catalogue 
The IoT Entity and Resource Catalogue handles meta data and descriptions about the physical world entities 
that are under observation and actuation by the IoT world. The OGC SensorThings models the observation of 
Things using Sensors that produce DataStreams of Observations, see the OGC Model below. This needs to 
be complemented with a conceptual model for the application. The IoT Entity and Resource Catalogue stores 
and manages the relationship between these two models. 

 
Figure 1 The OGC SensorThings Data Model 

OGC Registration API 

• Adding Things (including Locations) 

o Create, update and delete properties 

o Create, update and delete Datastreams for ObservedProperties 

• Adding Sensors 

• Adding FeatureOfInterest 

 

OGC Query API 

• Get Datastreams for Thing 

o Include Observations 

• Get Datastreams for Sensor 

o Include Observations 

• Get Observations for Datastream 

o Include FeatureOfInterest 

• Get Things at Location 

o Include Datastreams 

o Include Datastreams and Observations 

 

 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 8 of 26 Submission date: 2018-12-31 

 
Figure 2 The IoT Entity Catalogue models the relationship between application model and OGC Sensorthings 

Entity Registration API 

• Adding Entity (with type) 

o Create, update and delete attributes 

o Create, update and delete 

• Connect Entity and Thing 

• Connect Entity attributes with Datastreams 

Entity Query API 

• Get Entities of Type 

• Get Datastream Id for Entity attribute 

• Get Entity Attribute 

o Include Observations 

3.2.2. Service Catalogue 
One of the challenges in MONICA is the large number of service instances due to the large number of pilot 
cases. There are event based services that generate messages and services that provide direct remote call 
interfaces. To install a new instance of MONICA requires configuration of all these services and their 
interfaces. The purpose of the IoT Service catalogue is to provide an easy way of configuring and 
maintaining the system. 
 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 9 of 26 Submission date: 2018-12-31 

This part of the catalogue is specifically addressing the services used in MONICA. The main functionalities of 
the MONICA IoT Service Catalogue: 
 

• Provide discoverability of services 
• Description of Services providing metadata 
• Finding end points of services 
• Finding which message topics are consumed by the service 
• Finding which message topics are produced by the service 
• Provide connection to the OGC SensorThings API model 

 

The services are described by a Service Model which is derived from the Common Operational Picture 
Database, D6.4 “Decision Support Platform with Common Operational Picture 2”. It is possible to query about 
the existence of a service that provides certain information for instance ‘”crowd density”. Furthermore it is 
possible to get information about which endpoint the service resides and which are the events it produces. 
Also which MQTT topics to listen to in order to get relevant service information. Also the IoT catalogue will 
deliver information about which events the service consumes. 

The Service Catalogue is based on the OGC SensorThings API Tasking model. This model extends the 
Sensing model of OGC to allow control and manipulation of the physical world objects in an IoT application. 

 
Figure 3 OGC Sensor things API Tasking Model 

Thing 

This is the same definition as in the Sensing part of OGC – “a thing is an object of the physical world (physical 
things) or the information world (virtual things) that is capable of being identified and integrated into 
communication networks”. 

Actuator 

An Actuator is a device that can be controlled/tasked. The Actuator entity contains information and metadata 
about a task-able actuator. Each TaskingCapability has one Actuator and defines the parameters that can be 
set/tasked for the Actuator. 

TaskingCapability 

The TaskingCapability entity contains information about the capabilities of the task-able device. It contains all 
the parameters that can be used for controlling the device. SWE Common JSON encoding rules [OGC17-
011r2] are used to define these parameters for TaskingCapability. 

Task 

The Task entity contains the parameter detail of the control action that should be run on the task-able device. 

The TaskingCapabilities are the services that an Actuator is offering. If an Actuator is a camera, the service 
would be “start/stop” and possibly “zoom”. The Tasks are the actual calls or instructions to carry out the service.  



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 10 of 26 Submission date: 2018-12-31 

The Actuator could check the Task stream and when the Task “status:on” arrives it will actually carry out this 
action. However, this would probably be inefficient so it is also possible to subscribe and listen to when new 
tasks are created using MQTT and act upon this. 

 
Figure 4 Listening to Task entities using MQTT 

 

3.2.2.1. MONICA Tasking Model 
Different MONICA Services can register themselves and describe their TaskingCapabilities using the OGC 
Tasking Model.  

For instance a wearable wristband will register its Service “Display Text” as a TaskingCapability using the 
following JSON structure:  

{	
"type": "Text", 
"name": "display", 
"label": "display text", 
"description": "Set text to display", 
"constraint": { 
"type": "AllowedTokens", 
"pattern": "^[a-zA-Z ]*$" 

}	
	
	
Other MONICA services or apps modules can then use this service by creating a Task like this: 
 
{ 

"display": "MONICA Alert. Crowded at exit Vesterbrogade" 
} 
 
 
The Wristband Actuator will subscribe to these Task and execute them when they arrive. In MONICA there 
are 5 types of services that can be invoked and used through the OGC Tasking model: 
 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 11 of 26 Submission date: 2018-12-31 

• Information Services (Display, Updates, Alerts) 
• Instructional Services 
• Configuration Services 
• Action Services 
• Subscription Services 

 
Information Services 
These are services for displaying a message to a user, visitor, operator etc. Typically an alert on a wristband 
or a pop up message in an app. 
 
Instructional Services 
This type of service is intended for guiding or instructing an operator or a security guard. 
 
Configuration Service 
This service allows configuration of an IoT Device or sensor, for instance configuring an algorithm for object 
detection in a camera. 
 
Action Service 
This type of service performs a state changing action in the physical world, for instance turning on a light or 
starting an alarm bell, reducing the sound level. 
 
Subscription Service 
This service allows to start a subscription to listen to messages from a Service or initiate a callback function. 
 
 

3.2.2.2. IoT Service Catalogue Registration API 
 

Register Service 

{	
"type": "Visitor Communication", 
"name": "Visitor Wristband Display", 
"description": "displays the given text on a wristband" 
}	
 

Service/TaskingCapabilities 

Adds or updates a TaskingCapability of Service 

{	
"name": "alert", 
"description": "displays the given text on a wristband", 
"taskingParameters": { 

"type": "Text", 
"name": "display", 
"label": "display text", 
"description": "Set text to display", 
"constraint": { 

"type": "AllowedTokens", 
"pattern": "^[a-zA-Z ]*$" 
} 

"sender":  "id of service that generates the text message" 
} 
"properties": { 
} 

} 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 12 of 26 Submission date: 2018-12-31 

 
 

3.2.2.3. IoT Service Catalogue Query API  

• Search for Services by Function 

• Search for Services by Location 

• Search for Services by Message topics 

3.3. IoT Resource Management and Catalogue Tool 

SCRAL is the acronym for Smart City Resource Adaptation Layer and it is a kind of software wrapper that 
collects a set of drivers responsible for the integration of heterogeneous resources. Specifically, the SCRAL is 
in charge with the abstraction and virtualisation of physical entities within the MONICA IoT platform, so that 
specific devices and sub-systems functionalities are exposed to upper layers through a common interface 
which is agnostic to technology. 

Among main physical resources management activities, there are three topics relevant to the SCRAL: 

• Resources Configuration; 

• Resources Discovery; 

• Resources Health Monitoring. 

3.3.1. Resources Configuration 
In general, the configuration process provides values for the correct behaviour of components that are 
instantiated for the realisation of some specific functionality. Within an adaptation context, features may 
address the configuration of both physical and virtual parameters.  

In the first case, parameters for querying sensors can be set, including sensing data rate and publishing topic. 
To this purpose, the Control Core enabled by the SCRAL through the OGC modelling system can be used to 
reach specific device gateways and forward the information via REST and/or MQTT interface (more details 
are reported in MONICA D3.4).  

On the other hand, configuration of virtual parameters refers to the way the integrated modules are exposed 
for external services. This task is accomplished by the SCRAL with a strong support from Portainer1, a 
lightweight management user interface which allows to easily manage Docker containers, images, volumes 
and networks. SCRAL adapters are packaged in Docker images, pushed to the MONICA cloud and then 
deployed as pilot-specific configured containers. Figure 5 shows an example of the “Add container” interface 
used by the SCRAL to properly configure the adapter to be deployed. Container name, source image, port 
mapping and enable access control are the main configurable parameters for a container. 

                                                
1 https://www.portainer.io/#Home 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 13 of 26 Submission date: 2018-12-31 

 
Figure 5 Deployment configuration for a SCRAL adapter container via Portainer tool 

Furthermore, Figure 5 and Figure 7 show some of the available advanced settings that allow the assignment 
for the container to a virtual network as well as the restart behaviour in case the container would stop. As 
result, the whole set of the presented parameters allows the operator to import host images and easily manage 
a secure and functional deployment for different adapters running in parallel active pilots. In fact, the same 
integration module might be double instantiated within two different networks over two different listening 
endpoints, and separately linked with two different back end instances, so that each large scale installation 
would rely on its own IoT infrastructure. 

In addition to resources configuration support, there are other useful features provided by Portainer about log 
monitoring and console access. More details will be described in section 3.3.3 Resources Health Monitoring. 

 

 
Figure 6 Advanced settings for a for a SCRAL adapter container via Portainer tool - Network configuration 

 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 14 of 26 Submission date: 2018-12-31 

 
Figure 7 Advanced settings for a SCRAL adapter container via Portainer tool -  Restart policy 

3.3.2. Resources Discovery 
With the discovery process it is possible to collect information about devices and modules registered to a 
platform. This information can be useful to have an overview of the status of the platform, and also to easily 
access device and services catalogues for monitoring purposes. 

Because of the several technologies involved in the implementation of the physical layer, in most cases the 
SCRAL waits for subscription requests sent by the Edge layer to a specific listening endpoint. Each request 
registers a device into the MONICA platform, usually attached with static information relevant for the integration 
of the device itself, such as physical identifier, type of sensor, timestamp of the generated event etc. The 
SCRAL listening interface is always active for each adapter, so new resources can be added at runtime 
whenever needed.  

In other scenarios, where a push interface is not available from the physical layer (especially in the case of 
external platform integration), the SCRAL actively runs the discovery of available devices and stores the found 
information as for the other resources. In this case, once the integration process has started, if a new resource 
is added to the system, the SCRAL should run the discovery process again. 

The collected data during the discovery process is internally stored and exposed on demand by the SCRAL 
integration module via REST and MQTT connectors. The most useful representation is given by the local 
resource catalogue, where for each deviceID-propertyName couple there is an OGC Datastream assigned. 
The mapping between physical resources and Datastream IDs is the key information for the application 
developers to know where to get the expected values within the OGC semantic framework (see MONICA D3.4 
– Chapter 5 for details). Due to the complexity of the framework, the proper IDs might not always be 
straightforward to find. For this reason, the local resource catalogue could ease the IoT developers in the 
finding, and also helping them for the tasks of data subscription and retrieval. Other information from the 
physical layer might be represented as well, made available through the SCRAL and finally shown via 
visualisation tools. 

3.3.3. Resources Health Monitoring 
Checking the status of the resources is a task that can be applied at different levels of the platform. At the very 
low level, it might happen that sensors and gateways go offline for a period of time and events are not updated 
anymore. When issues originates from some network or back end failure, Portainer offers good monitoring 
solutions for deployed resource adapters, server and volumes.  

Figure 8 shows the Portainer interface where all the deployed containers are represented by name, status, 
endpoint and other context information.  

 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 15 of 26 Submission date: 2018-12-31 

 
Figure 8 Container list and status information provided by Portainer 

The “State” field is the first flag returning whether the container is properly running or not. Depending on the 
“running” or “stopped” conditions, the operator can either enter the log file for each container as well as the 
console of the container itself, as shown in Figure 9. The “Logs” session is a space that records the events 
that occur in the container and where errors, problems and warnings are constantly logged and saved for 
analysis (Figure 10). Log files are indeed always available, even though the container stopped for some 
reason. 

 

 
Figure 9  Container details on Portainer 

 

 

 
Figure 10 Container logs on Portainer 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 16 of 26 Submission date: 2018-12-31 

However, for connectivity issues towards external components, container log files might be not sufficient to 
fully understand where the problem comes from. For this reason, each SCRAL integration module is 
“containerised” from a Docker image that supports bash access, so that, when the container is still running, it 
is possible to enter it via the “Console” bash interface and explore its internal status as well ping possibly 
unreachable modules, as depicted in Figure 11.  

Moreover, other statics and performance analysis might be run either from the “Stats” section of “Container 
details” view or also from the bash console itself.  

  
Figure 11 Container console on Portainer 

 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 17 of 26 Submission date: 2018-12-31 

4. Generic Enablers 

The MONICA Generic Enablers will be made available on Git as on Open Source Repository. Pre-prepared 
Docker Containers will also be made available. This will be described in the second release of this deliverable. 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 18 of 26 Submission date: 2018-12-31 

5. Third-party Tools 

5.1. Message and Event Broker Configuration 

The MONICA project has selected RabbitMQ2 as the implementation mechanism for the message broker. 
RabbitMQ is an open source component supplied under the Mozilla Public License. RabbitMQ is a widely 
used open source message broker3 with an extensible architecture. It implements the AMQP 0-9-1 protocol4 
(Advanced Message Queuing Protocol) and can - through extension mechanisms, plugins - support the most 
common messaging protocols, e.g. MQTT (Message Queuing Telemetry Transport), STOMP (Streaming 
Text Oriented Messaging Protocol) and XMPP (Extensible Messaging and Presence Protocol). Extensions 
and adapters can be written to support other messaging patterns, protocols and security management 
solutions. 
 
RabbitMQ implements AMQP 0-9-1 and the AMQP concepts of messages, producers, exchanges, queues 
and consumers. Each of these exists within an administrative unit called virtual host. A broker may contain 
several virtual hosts, and the users, defined in RabbitMQ, can be assigned with read, write and 
administrative rights by the host.  

5.1.1. Basic Concepts 
The basic concepts of a message broker is that Producers and Consumers communicate through Messages. 
Messages are managed or routed through Exchanges. Exchanges are basically a set of queues together 
with a principle for how the messages are distributed to these queues. 
 
A publisher – an application that produces messages - sends a message to an exchange, in which it is 
routed to queues. Then the message is pushed to (or pulled by) a consumer – an application that processes 
messages - for processing. The producer, consumers and the broker can all reside on different brokers. The 
following section describes these basic concepts of AMQP 0.9.1 in the context of the RabbitMQ 
implementation. 

5.1.1.1. Producers 
A producer is an application that sends messages to an exchange. The producer may be any application 
written in any programming language, using an AMQP client API. The producer sets the attributes and the 
content of the message, including routing information, and sends the message to an exchange on a broker 
host. The producer specifies whether messages should be persisted or transient. Furthermore the producer 
specifies what should happen with messages that cannot be routed to a queue. 
 
A producer in MONICA could be a sensor at the main gate reporting people passing, or an intelligent camera 
detecting a queue, or a wristband reporting a location. 

5.1.1.2. Consumers 
A consumer can be considered any application that receives messages from a queue and is identified by a 
consumer tag string. The messages can be delivered to the consumer by the AMQP push API or fetched by 
the consumer using the AMQP pull API. It is possible to register more than one consumer per queue or 
declare one consumer as the exclusive consumer for the queue. The consumer can send acknowledgement 
messages back to the host to indicate whether the message has been received or rejected. 
 
Typical consumers in MONICA are the Common Operational Picture (Deliverable D6.4) and IoT Display  
(Deliverable D3.6) 
 

5.1.1.3. Messages 
An AMQP message consists of a header with attributes and application data. Attributes consist of key-value 
pairs. The properties consist of optional application-specific properties and a set of standard message 
                                                
2 https://www.rabbitmq.com/ 
3 At the time of writing 35.000 production deployments , https://www.rabbitmq.com/ 
4 http://www.amqp.org/sites/amqp.org/files/amqp0-9-1.zip 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 19 of 26 Submission date: 2018-12-31 

delivery annotations defined by the AMQP specification, e.g. message id, correlation id, time to live, delivery 
mode, priority, routing key and header dictionary.  
 
The routing key or header dictionary are “addressing” attributes set by the producer to specify which 
queue(s) a message should be distributed by the exchange. The delivery mode attribute of a message can 
be declared persistent by the publisher – it is transient by default – and then it must be persisted between 
server restarts. 
 
The application data is the actual content of the message. Actually it is a byte array which is not inspected by 
the broker. It is entirely application-specific and could be e.g. UTF-8 encoded text, XML, JSON, or Protocol 
Buffer byte format. AMQP defines an optional type system for specifying content and encoding type of the 
application data. 

5.1.1.4. Queues 
Queues are named first-in-first-out buffers in a message broker host that stores messages in memory or on 
disk. The messages are kept in the queue until a consumer is connected. Then the messages are delivered 
(in sequence) to the receiving application. The queues can be shared or private to a consumer. When a 
queue is private only the consumer knows about it and it will be removed once the consumer stops listening. 
 

5.1.1.5. Bindings 
A binding is the relation between a queue and an exchange and defines how messages should be routed 
from the exchange to the queue. Bindings are created or destroyed by applications over time to shape the 
message flow to queues. When a message arrives at the exchange the message attributes - routing key or 
header dictionary – set by the producer are evaluated to see if the binding has a match. If the binding 
matches, the message is copied to the queue. How the matching is done depends on the type of exchange. 
 

5.1.1.6. Exchanges 
Messages are sent from a producer to an exchange. Exchanges are defined per message broker host and 
they are responsible for routing the messages to queues. The way the messages are routed depends on the 
routing keys or headers set by the producer, the queue binding and the type of exchange.  
 
The exchanges can be configured as durable, temporary or auto deleted when they are created. Durable 
exchanges will survive server restarts and will remain in the broker until explicitly deleted. Temporary 
exchanges exist until RabbitMQ is shut down. Auto deleted exchanges are deleted when the last producer or 
binding is removed from the exchange. 
 
The dead letter exchange is an AMQP extension provided by RabbitMQ. The default exchange behaviour is 
to drop messages for which there is no binding providing a matching queue. The dead letter exchange will 
capture messages that cannot be delivered, which will be an important part of operational management of 
the system. 

5.1.1.6.1. Direct exchange 

 
Figure 12 Direct exchange 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 20 of 26 Submission date: 2018-12-31 

A direct exchange delivers messages to queues based on the message routing key. A message is routed to 
the queues whose binding key has an exact match with the routing key of the message, e.g. a message with 
routing key “log” would be delivered to all queues with binding key “log”. A common practice is to use the 
queue name as routing key. If there is no matching binding, the message is discarded. AMQP specifies that 
an unnamed default exchange must be implemented which is a direct exchange. All queues must be bound 
to the unnamed exchange using the queue name as routing key.  
 
Direct exchange is typically used when the producer has good knowledge about how the message should be 
used and by whom.  

5.1.1.6.2. Fanout exchange 

 
Figure 13 Fanout exchange 

In a Fanout exchange, the messages are routed to all queues that are bound to the exchange. Any routing 
keys or headers are ignored. This is a useful pattern when broadcasting to several consumers that may 
process the message in different ways, e.g. logging, notification and aggregation. 
 
A typical reason to use Fanout exchange is for messages that should be processed differently by different 
consumers. In the context of MONICA this could for instance be applied when a “violence situation” has 
been detected This message should be sent to Decision Support which will advice guards, it should also be 
processed by the Common Operational Picture and logged by the IoT Display. 

5.1.1.6.2.1.  Topic exchange 

 
Figure 14 Topic exchange 

 
The topic exchange uses the routing key to distribute messages to queues. A topic routing key consists of 
zero or more words separated by dots “.”, e.g. “MONICA.MainGate.PeopleData”. The binding defines a 
routing pattern by the same rule, where “*” is used as a wildcard for a single word and “#” is used as a 
wildcard for zero or more words.  If the binding for one or several queues matches the routing key, the 
message is distributed to these queues. This is very similar to the topic hierarchy and matching in MQTT 
(exchanging “/” for “.”).  
 
A typical use for topic exchanges is to implement a publish-subscribe messaging pattern. In the context of 
MONICA this will correspond to sensors regularly reporting observations such as sound levels or air 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 21 of 26 Submission date: 2018-12-31 

temperature. 
 

5.1.1.6.3. Headers exchange 

 
Figure 15 Headers exchange 

The headers exchange allows for slightly more flexible routing than the topic exchanges. The routing key is 
not used in header exchanges. Instead, the message headers attribute, containing keys-value pairs, is used. 
The queue binding specifies the header keys to be matched and (optionally) the values that these should 
have. If the binding does not specify a value for the header key, it is sufficient for the key to be present in the 
message header for the binding key to match the message key. If the binding specifies a value for a key, the 
message header key must match this value. The binding attribute “x-match” specifies whether the logical 
“AND” or “OR” should be used when combining the matches of header binding keys. If “x-match=all” is 
specified, all key-value pairs in the binding must match the header for the message to be routed to that 
queue. The value “x-match=any” indicates that if any of the key-value pairs in the binding matches one or 
more in the message header, the message will be routed to that queue.  

5.1.2. Message Broker Monitoring, Configuration and Management 
Monitoring, configuration and management of RabbitMQ is handled by the RabbitMQ-management plugin. 
This plugin provides a command line tool, a browser-based UI and an HTTP-based API for monitoring and 
alerts that can be used to integrate with system operations management tools. Via the command line tool, 
set up, configuration and deployment of a Rabbit MQ server for a specific system can be scripted and 
automated using e.g. Docker files5 and -images. 

 
Figure 16 RabbitMQ Management Console 

                                                
5 https://docs.docker.com/engine/reference/builder/ 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 22 of 26 Submission date: 2018-12-31 

 
 

 
Figure 17 RabbitMQ Channels 

The AMQP protocol is programmable; queues, exchanges and bindings are defined dynamically by the 
publishers and consumers. This means that for the most part, messaging patterns, topic schemes and routing 
topologies are defined by the applications using RabbitMQ, not by the broker administrators. However, 
performance and scalability settings (i.e. clusters, federations and the shovel) require setup by the broker 
administrators and are configured either from command line or from the management UI. E.g., a RabbitMQ 
cluster configuration may be set up for deployment by the Docker compose tool. User management, memory 
configuration and installed plugins (e.g., the MQTT or federation plugins) are also handled from the 
management plugin and web UI. 

5.1.2.1. Monitoring the Message Broker with Nagios 
Nagios is a widely-used free and open-source application for the monitoring of all kinds of IT systems. The 
Nagios server can be deployed on a dedicated machine or as part of a Docker environment and can monitor 
all kinds of local or remote infrastructure and services. It is extensible using plugins for specific monitoring 
requirements. The open source version of Nagios comes with a pre-defined set of plugins. Many more are 
available thanks to the open source community. Very specific monitoring requirements for any kind of IoT 
service could be met with custom-developed script in any programming language and integrated with Nagios 
as a user-defined plugin. 

The Nagios server can be configured to notify administrators and other stakeholders if the system status is out 
of normal parameters. Notifications can be sent via e-mail or any kind of instant messaging system. Nagios 
also notifies the receivers if the service returns back to normal operation. It also provides a web GUI with 
configurable dashboards, graphs and reports.  

There is a dedicated plugin available for the monitoring of RabbitMQ deployments6. This plugin queries the 
REST API of the RabbitMQ management interface to check e.g. service aliveness or number of active 
connections. 

The more generic open source plugin check-mqtt7 can be used to monitor the stream of MQTT messages sent 
to the broker. The plugin can monitor a list of topics for messages with certain keywords and produce a warning 
or error if no expected messages appear in a defined timeframe. 

                                                
6 https://github.com/nagios-plugins-rabbitmq/nagios-plugins-rabbitmq 
7 https://github.com/jpmens/check-mqtt 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 23 of 26 Submission date: 2018-12-31 

5.1.3. Management of offline situations 
An important problem to manage is when sensors and gateways go offline for a period of time, especially 
sensors that report with high frequency. The most common reason is that the Internet connection is lost, but it 
could also be that the receiver is temporarily not functioning. There are several problems that could arise from 
this: 

• Display of a phenomenon will lack data to render 

• Applications that are taking decision based on time series and trends will all of a sudden lack data 

• Learning algorithms will not be properly trained if a large amount of data is missing. 

In the context of MONICA this could mean that the decision support components cannot properly assess a 
situation since they don't have the proper knowledge about what is the previous status at the event, such as 
how many people have passed through a gate, what have the sound levels been for the last hour. 

The standard behaviour is that sensors/gateway cache the messages they are not able to send up to the limit 
of what their buffers allow. When they come online again they need to re-send the message to the message 
broker. Then there is a problem of over flooding the message broker and the corresponding storage facility. 
Therefor the re-sending needs to be controlled in a scheduled manner depending on the capacity of the 
receiver. Several schemes can be developed: 

• Re-sending messages one- by-one in a timely manner 

• Packaging many messages and send a compressed package. 

5.2. KeyCloak 

Keycloak8 is an open source Identity and Access Management solution. Some of the features are: 

• Single-Sign On: Authenticate on Keycloak rather on different applications. One single login will allow 
access to multiple applications and/or services 

• Identity Brokering and Social Login: Enable login with social networks such as Google, Facebook, 
Twitter and GitHub 

• User Federation: Connect directly to LDAP and Active Directory servers 

• Standard Protocols: OpenID Connect OAuth 2.0 and SAML. 

                                                
8 http://www.keycloak.org 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 24 of 26 Submission date: 2018-12-31 

 
Caption is missing. 

5.3. GOST 

GOST is a database based on a? Progress relational database that implements the OGC Sensorthings Data 
Model. GOST implements the OGC Sensorthings API and provides a simple dashboard that a developer can 
use to check stored data and make different listings of OGC data. 

 
 

Caption is missing 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 25 of 26 Submission date: 2018-12-31 

6. Conclusion 

This deliverable has described the first version of the MONICA Development Toolbox. 

The toolbox is currently divided into three different categories: 

• Software Developer Tools. These are packaged tools with user interfaces intended to be used by 
developers. They have been developed by the MONICA project. So far the Software Developer Tools 
have proved efficient in allowing the project team to quickly create many different pilot use cases. 

• Generic Enablers. These are re-usable software components developed by the MONICA project. They 
are intended to be integrated by developers in their applications. 

• Third Party Services and Tools. These are some openly available third-party tools that are 
recommended by the MONICA project to use when building Large Scale IoT applications. MONICA 
Tools and Generic Enablers have available interfaces for these third-party tools and services. One 
conclusion to be drawn is that the use of Open standards and Open Source tools have facilitated a 
rapid development and deployment of the Monica platform. 

The toolbox can be used to integrate various resources into the IoT Platform and hides the complexity of the 
communication with IoT devices. It features model-driven development of services that use the MONICA 
platform, also in connection with available Open Data sources.  

 



 D7.5 The MONICA Development Toolbox 1 
 

Document version: 1.0 Page 26 of 26 Submission date: 2018-12-31 

7. List of Figures 

Figure 1 The OGC SensorThings Data Model .............................................................................................. 7 
Figure 2 The IoT Entity Catalogue models relationship between application model and OGC Sensorthings .. 8 
Figure 3 OGC Sensor things API Tasking Model .......................................................................................... 9 
Figure 4 Listening to Task entites using MQTT. .......................................................................................... 10 
Figure 5 Deployment configuration for a SCRAL adapter container via Portainer tool.................................. 13 
Figure 6 Advance settings for a for a SCRAL adapter container via Portainer tool - Network configuration .. 13 
Figure 7 Advance settings for a SCRAL adapter container via Portainer tool -  Restart policy ..................... 14 
Figure 8 Container list and status information provided by Portainer. .......................................................... 15 
Figure 9  Container details on Portainer. .................................................................................................... 15 
Figure 10 Container logs on Portainer. ....................................................................................................... 15 
Figure 11 Container console on Portainer. .................................................................................................. 16 
Figure 12 Direct exchange ......................................................................................................................... 19 
Figure 13 Fanout exchange........................................................................................................................ 20 
Figure 14 Topic exchange .......................................................................................................................... 20 
Figure 15 Headers exchange ..................................................................................................................... 21 
Figure 16 RabbitMQ Management Console ................................................................................................ 21 
Figure 17 RabbitMQ Channels ................................................................................................................... 22 
 
 

 


